Photoluminescence in two-dimensional crystals

Goki Eda1,2,3

1 Department of Physics, National University of Singapore, Singapore 117542
2 Department of Chemistry, National University of Singapore, Singapore 117543
3 Graphene Research Centre, National University of Singapore, Singapore 117546

Two-dimensional (2D) crystals derived from layered structures exhibit a unique set of properties as elegantly demonstrated for graphene. Semiconducting 2D structures such as MoS\textsubscript{2} sheets are attractive building blocks for novel electronic and optoelectronic devices. In this talk, I will report photoluminescence properties of group 6 transition metal dichalcogenide (TMD) 2D crystals and discuss how their spectral features provide insight into the evolution of chemical, structural, and electronic properties of these materials.

A single layer MoS\textsubscript{2} is a direct gap semiconductor in striking contrast to its indirect gap bulk counterpart \cite{2}. As a result, single layer MoS\textsubscript{2} exhibits distinct band gap photoluminescence. We find that photoluminescence spectra of mono- to few-layer WS\textsubscript{2} and WSe\textsubscript{2} indicate that their band structure undergoes a similar indirect-to-direct gap transition when thinned to a single monolayer (Fig. 1) \cite{3}. The transition is evidenced by distinctly enhanced PL peak centered at 630 and 750 nm in monolayer WS\textsubscript{2} and WSe\textsubscript{2}, respectively. We demonstrate that indirect gap emission and direct gap hot electron emission is pronounced in few-layer WSe\textsubscript{2} due to small energy difference between the two transitions. At sufficiently high temperatures, short-range interlayer interactions in multilayer sheets weaken such that each layer behaves like an individual monolayer, giving rise to enhanced photoluminescence similar to the case of MoSe\textsubscript{2} \cite{4}.

\cite{1} Wang et al. Nat. Nanotechnol. 7, 699 (2012).
\cite{3} Zhao et al. ACS nano. 7, 791 (2013).
\cite{4} Tongay et al. Nano Lett. 12, 5576 (2012).

Fig.1 Photoluminescence spectra of 1 to 5 layer WS\textsubscript{2} (left) and WSe\textsubscript{2} (right).