Optimal Light Harvesting Structures in the mid Infrared

F. Villate-Guío¹, F. de León-Pérez^{1,2}, F.J. García-Vidal³, and L. Martín-Moreno¹

¹Departamento de Física de la Materia Condensada and Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza

²Centro Universitario de la Defensa, E-50090 Zaragoza

³Departamento de Física Teórica de la Materia Condensada, Universidad Autonoma de Madrid, E-

28049 Madrid

fvillate@unizar.es

The ability of surface modes for squeezing visible light into metallic sub-wavelength apertures have being intensively investigated during last 10 years [1]. Efficient light harvesting (LH) structures have been proposed [2,3] and later used in the development of optical detectors, which can be integrated into standard optoelectronic devices [4]. The main goal of the present work is to translate the state of the art in LH technologies from the optical to the mid-IR regimen. As a first step into that direction, we study a typical LH structure: a sub-wavelength slit perforated in a corrugated metal film; see the inset of Fig. 1. Its IR response is computed with the coupled-mode method [1]. We show that the IR response of this 1D system can be optimized following simple design rules, based on physical intuition. Such optimal systems are next used as a seed for a conjugate gradient algorithm (CGA), which automatically scans the whole parameter space. Fig. 1 illustrates our results. It shows the spectra for a slit-grove array optimized with the CGA at a wavelength λ =4 µm. The back curve depicts the normalized-to-area transmittance (η) of a slit-groove array, where the single slit *i*s surrounded by 20 grooves. An efficiency of η=60 is obtained at λ =4 µm, which means that our LH structure is 60 times more efficient than a single slit. A further enhancement of 20% is achieved for a chirped structure (blue curve of Fig. 1).

References

[1] F.J. Garcia-Vidal et al., Rev. Mod. Phys. 82, 729 (2010).

[2] F. J. García-Vidal, H. J. Lezec, et al., Phys. Rev. Lett. 90, 213901 (2003)

[3] O. T. A. Janssen et al., Phys. Rev. Lett. 99, 043902 (2007).

[4] L. A. Dunbar et al., Appl. Phys. Lett. 95, 011113 (July 2009).

Figures

Figure1. Normalized to area transmittance for a slit-grooves array optimized at λ =4.0 µm. The efficiency of the regular structure described in the text is compared with a chirped slit-groove array (Slit: width=0.36 µm and depth=1.28 µm. Grooves: depth=0.5 µm, width=0.36 µm, and pitch=3.8 µm).