Processes leading to the formation of the deposit on the thinner electrode during the alternative current arc discharge with carbon electrodes of different diameters

M. Stancua, Gr. Ruxandaa, S. Vizireanub, G. Dinescub, D. Ciuparua

aPetroleum Gas University of Ploiesti, Physics Department, Bucharest Blvd.39, 100680 Ploiesti, Romania

bNational Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest, 077125 Romania

elaela11@yahoo.com

In the process of synthesizing carbon nanostructures by arc discharge between two electrodes of different diameters a solid deposit is formed on the larger diameter electrode. The present paper discusses the mechanism of the formation of the carbonaceous deposit on the larger diameter electrode. Among the driving forces of the deposit formation we have considered the thermophoretic force and the impact force of the flux consisting of carbon atoms resulted from the evaporation of the smaller diameter electrode. Based on our experimental results we have analyzed the contribution of each of these components taking into account the environment created by the presence of plasma.

Acknowledgements

Authors recognise financial support from the European Social Fund through POSDRU/89/1.5/S/54785 project: “Postdoctoral Program for Advanced Research in the field of nanomaterials”.

References