Ordered Vacancy Network Induced by the Growth of Epitaxial Graphene on Pt(111)


1Instituto Ciencia de Materiales de Madrid (CSIC), C. Sor Juana Ines de la Cruz 3, 28049-Madrid, Spain
2Centro de Astrobiología, INTA-CSIC, Torrejon de Ardoz, 28850 Madrid, Spain
3Sincrotrone Trieste SCpA, Strada Statale 14, Km. 163.5, 34149 Trieste, Italy
4Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
5Department of Applied Physics, Eindhoven University of Technology, P.O. box 513, 5600 MB Eindhoven, The Netherlands

jmendez@icmm.csic.es

The strength and the nature of the interaction of epitaxial graphene with metallic substrates is still widely discussed in the literature. In order to give additional contribution to this topic we have studied large areas of (√3x√3)R30º graphene commensurate with a Pt(111) structure [1]. Experimental evidence carefully combined with density functional theory calculations led us to the conclusion that this structure causes a reconstruction on the Pt surface which consists of an ordered vacancy network formed in the outermost Pt layer, and a graphene layer covalently bond to the Pt substrate.
References


Figures

Figure caption. STM image (left) and DFT simulation (right) of the proposed vacancy model (overlaid).