Dimer-covering RVB treatment of single-walled zigzag carbon nanotubes

M.A. Garcia-Bach

Departament de Física Fonamental, Facultat de Física and Institut de Química Teòrica i computacional, Universitat de Barcelona, Diagonal 647, 08028-Barcelona, Catalonia, Spain. m.angels.garcia bach@ub.edu

Single-walled zigzag carbon nanotubes (CNTs) with h hexagons around the carbon nanotube, h ranging from 3 to 19, have been investigated from a resonating-valence-bond point of view. These values of h include realistic CNTs with diameters ranging from 0.5 to 1.5 nm , which correspond to $h \sim 6$ and $h \sim 19$, respectively.
Long-range spin-pairing order (LRSPO) [1,2,3] allows to separate the set of VB configurations in $h+1$ different subsets or phases. The parameter associated with the LRSPO, p, can take the relevant values $p=0,1, \cdots, h$.

We have obtained the Heisenberg energy, in units of J per carbon atom, $\varepsilon_{p}(h)$, and also per polyene ring for zigzag single-walled CNTs with $h=3,4, \cdots, 19$ and $p=0,1,2, \cdots, h$, witin a dimer-covering counting approximation $[4,5,6]$. First, the ground-state energy per carbon atom is obtained when the phase, which we design as p_{0}, is the integer closest to $h / 3$. See, for instance, Figure 1.
From the difference in energy per polyene ring, $\Delta(h)$, in units of J, between the two lowest-lying phases, p_{0} and p_{1} it is noted that degeneracy between the two lowest-lying phases occurs when $(h+1) / 3$ is an integer. Therefore, de-confined low-energy topological spin defects would occur, and these carbon nanotubes should be conductors, in analogy to polyacethylene. See, for instance, Figure 2, where $\Delta(\mathrm{h})$ is represented as a function of h for $h=3 n-1,3 n, 3 n+1$. In clear contrast, no such degeneracy is observed for either, $h=3 n+1$ or $h=3 n$, so bound pairs of topological spin defects are expected to occur in these cases.

References:

[1] M.A. Garcia-Bach, Eur. Phys. J. B 14 (2000), 439.
[2] M.A. Garcia-Bach, `'Many-body VB ansätze. From polymers and ladder materials to the square lattice" in Valence Bond Theory, Elsevier, New York, 2002, pp. 729-768.
[3] M.A. Garcia-Bach, Phys. Rev. B 72 (2005), 024530.
[4] W.A. Seitz, D.J. Klein, T.G. Schmalz, and M.A. Garcia-Bach, Chem. Phys. Lett. 115 (1985), 139; 118 (1985), 110E.
[5] D.J. Klein, G. E. Hite, and T. G. Schmalz, J. Comput. Chem. 7 (1986), 443.
[6] T.P. Iv\{Z\}ivkovil'c, B.L. Sandleback, T.G. Schmalz, and D.J. Klein, Phys. Rev. B 41 (1990), 2249.

Figures:

Figure 1.

Figure caption

Figure 1. The energy per carbon atom, $\varepsilon_{p}(h)$, as a function of $p / h: h=3 n-1(\boldsymbol{\square}), h=3 n(\bullet), h=3 n+1(\bullet)$, with $n=$ integer and h decreasing from top to bottom. Bottom right: The value of the phase p_{0} yielding the lowest-lying energy per polyene ring, for $h=3 n(\bullet), h=3 n+1(\bullet)$, and $h=3 n-1(\square)$.

Figure 2. (a) Diference in energy per polyene ring, $\Delta(h)$, in units of J between the two lowest-lying phases, p_{0} and p_{1}, as a function of the number of hexagons around the CNT. De continuous lines, from top to bottom, correspond to $h=3 n(\bullet), h=3 n+1(\diamond)$, and $h=3 n-1(\square)$, respectively. The top two continuous lines are obtained by fitting the Δ values by a power series on $1 / h$, and tend asymptotically to 0.0125907 and 0.0123187 , respectively. The bottom continuous line is obtained by simply joining the calculated values of Δ. (b) Δ for $h=3 n-1$, for $n=2, \cdots, 6$.

