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With the aim of manufacturing smaller and faster devices, the electronic industry is today entering the
nano and picosecond scales. In such particular scenarios, electron dynamics becomes affected by
strongly correlated quantum dynamics, both in space and time. Thus, in order to provide an accurate
enough description of the electron-electron correlations, quantum transport simulators must consider a
reasonable approach to the many-particle problem. Anyway the big deal concerns the solution of the
many-particle Schrédinger equation nowadays solvable only for very few degrees of freedom.

In this work we present a general purpose time-dependent 3D quantum electron transport simulator
based on Bohmian trajectories that we call BITLLES [1-3]. It is based on a recently published algorithm
[1] that, on the grounds of Bohmian Mechanics [2], solves the many-particle Schrédinger equation for
hundreds of electrons in terms of multiple single-particle pseudo-Schrddinger equations without losing
the explicit Coulomb and exchange correlations among electrons (at a level comparable to the Time
Dependent Density Functional Theory) [1-3].

The adaptation of Bohmian mechanics to electron transport leads to a quantum Monte Carlo (MC)
algorithm, where randomness appears because of the uncertainties in energies, initial positions of
(Bohmian) trajectories, etc [2-4]. The ability of our simulator to deal with strongly correlated systems is
shown here for a Resonant Tunneling Diode (RTD). Its characteristic I-V curve with Coulomb
correlations introduced at different approximation levels is plotted in Fig. 1. As it can be observed, the
effect of the correlations appear not only in the magnitude of the current but also in the position and
shape of the resonant region [3,5]. Many-particle tunneling phenomena are reveled in the (super-
Poissonian) behavior of the Fano factor shown in Figs. 2 and 3 [2]. In Fig. 4, we show the achievement
of current continuity in the computation of the AC current for the same RTD [6]. The (time-dependent)
current response to a voltage step is shown in Figs. 5 and 6.
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Fig. 1. DC Current for a RTD with Coulomb Fig. 2. Fano Factor computed for the RTD of Fig. 1
correlations introduced at different levels of computed directly from the (time-dependent)

accuracy. current fluctuations.
ST R s
£ Surface 1 (S1
AN y
Cathode Cathod/e T surtaces oy e ] T swmed ey e
2 z o | E ‘
Resonant s o S 3
energy £ o2 S
1 4
» le/(/eq L5 Surface 5 (S5) - -~ -Method 1
Anode Anode = j g
Quasi Fermi Shifted e N e
levels Resonant energy 5 g
Fig. 3. RTD Band diagram. The potential deformation N ’
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due to many-particle tunneling in the well is the basic )
the six surfaces of an arbitrary parallelepiped. The

sum of the current on the six surfaces is zero
demonstrating the achievement of overall current

continuity.
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Fig. 5. Current response of the RTD to a step input Fig. 6. Spectrum of the current response of Fig. 5.
voltage.  Self-consistent ~ boundary  conditions Cut off frequency and its offset due to the lead
including the leads are used. delay are pointed out.



