Designing multifunctional chemical sensors using metal doped carbon nanotubes

Duncan J. Mowbray1,2, Juan Maria García Lastra1,2, Kristian S. Thygesen2, Angel Rubio1,3, Karsten W. Jacobsen2

1Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Depto. Física de Materiales, Universidad del País Vasco and DIPC, Avenue Tolosa 72, E-20018 San Sebastián, Spain
2Center for Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
3Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

Duncan.Mowbray@gmail.com

We demonstrate a bottom up approach to the computational design of a multifunctional chemical sensor [1,2]. General techniques are employed for describing the adsorption coverage and resistance properties of the sensor based on density functional theory (DFT) and non-equilibrium Green's function methodologies (NEGF), respectively. Specifically, we show how Ni and Cu doped metallic (6,6) single-walled carbon nanotubes (SWNTs) may work as effective multifunctional sensors for both CO and NH$_3$.

References

Figures

Figure 1: Schematic of a chemical sensor consisting of active sites (metal dopants in a (6,6) carbon nanotube), a target molecule (CO), a background (atmospheric air), and a sensing property (resistance).