The Optoelectronic Property of Single CdSe Nanowire/monolayer Graphene Heterojunctions

Yuan Yan, Yangbo Zhou, Xuewen Fu, Yazhou Wang, Zhimin Liao, Dapeng Yu.

State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, (P. R. China) E-mail: liaozm@pku.edu.cn

Graphene has attracted wide atterntions since first discover in 2004^{[1] [2]} and then awarded Nobel Prize in 2010, because of its exceptionally high crystal and electronic quality^[3]. However, as a strictly twodimensional material with zero-gap, its optoelectronic property is not good enough. Considering the excellent luminescent material CdSe whose badgap is 1.74eV at 300K^{[4] [5]}, we constructed heterojunction structure based on a single CdSe nanowire and a monolayer graphene.

Here, graphene have been synthesized via a simple chemical vapor deposition method on Cu chip^[6], and then transferred to a clean silicon substrate with 300nm oxide layer. The CdSe nanowires have also been synthesized via a simple chemical vapor deposition method at 0.5Mpa in a horizontal quartz tube furnace^[7]. After the electrodes on graphene were done, the CdSe nanowire was transferred from silicon substrate to across on the graphene directly by glass fiber under an optical microscope.

Under wavelength-635nm, power-10mV red laser irradiated, the device should show some interesting phenomenons^{[8] [9] [10]}. However, a similar phenomenon in our experiment did not be found. At the same time, this device just has a weak backgate modulation.

We will put much more attentions on the performance of the device, more and better results can be expected.

References

[1] Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science(2004) 666-669.

- [2] Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA(2005)10451-10453.
- [3] A. K. Geim and K. S. Novoselov. The rise of graphene. Nature Materials (2007) 183-191 .
- [4] Sheng-Chin Kung, et al. 20 μ s Photocurrent Response from Lithographically Patterned Nanocrystalline Cadmium Selenide Nanowires. **Nano Lett** (2010) 1481-1485.
- [5] Muhammad Iqbal Bakti Utama, et al. Vertically Aligned Cadmium Chalcogenide Nanowire Arrays on Muscovite Mica: A Demonstration of Epitaxial Growth Strategy. **Nano Lett** (2010).
- [6] Xuesong Li, et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. **Science**(2009)1312-1314.
- [7] Christopher Ma and Zhonglin Wang. Road Map for the Controlled Synthesis of CdSe Nanowires, Nanobelts, and Nanosaws—A Step Towards Nanomanufacturing. **Adv. Mater**. (2005) 2635-2639
- [8] Yue Lin, et al. Dramatically Enhanced Photoresponse of Reduced Graphene Oxide with Linker-Free Anchored CdSe Nanoparticles. **ACSNANO**(2010) 3033-3038.
- [9] Zheyuan Chen, et al. Energy Transfer from Individual Semiconductor Nanocrystals to Graphene. **ACSNANO**(2010) 2964-2968.
- [10]Abdallah F. Zedan, et al. Ligand-Controlled Microwave Synthesis of Cubic and Hexagonal CdSe Nanocrystals Supported on Graphene. Photoluminescence Quenching by Graphene. J. Phys. Chem. C (2010) 19920–19927.

(a) Schematic picture of the heterojunctions and the schematic test circuit; (b) SEM image of the heterojunctions; (c) SEM image of the CdSe nanowire device; (d) I/V curves of CdSe nanowires device; (e) I/V curve of graphene; (f) I/V curves of CdSe Nanowire/Graphene heterojunction with backgate, red-0V, black-80V.