Work-function engineering of graphene electrodes by self-assembled monolayers for high-performance organic field-effect transistors

Jaesung Park, Seon Ho Kim, Sung Hyun Sim, Byung Hee Hong, and Kwang S. Kim

1Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea, 2SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-746, Korea

Kim@postech.ac.kr

We have devised a method to optimize the performance of organic field-effect transistors (OFET) by controlling the work functions of graphene electrodes by functionalizing the surface of SiO$_2$ substrates with self-assembled monolayers (SAMs). The electron-donating NH$_2$-terminated SAMs induce strong n-doping in graphene, while the CH$_3$-terminated SAMs neutralize the p-doping induced by SiO$_2$ substrates, resulting in considerable changes in the work functions of graphene electrodes. This approach was successfully utilized to optimize electrical properties of graphene field-effect transistors and organic electronic devices using graphene electrodes. Considering the patternability and robustness of SAMs, this method would find numerous applications in graphene-based organic electronics and optoelectronic devices such as organic light emitting diodes and organic photovoltaic devices.