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The interaction of collective vibrations of crystal lattice (phonons) and electrons has fundamental 
implications on properties of materials. This interaction takes an unusual form in graphene [1] leading to 
breakdown of Born-Oppenheimer approximation [2] or the anomaly of the optical phonon [3]. In light of 
this peculiar electron-phonon interaction, and recent interest in collective excitations of electrons in 
graphene – plasmons (e.g., see [4] and Refs. therein), here we consider plasmon-phonon coupling in 
graphene. We predict [4] that plasmon-phonon coupling occurs with a peculiar crossing of polarizations: 
longitudinal plasmons couple exclusively to transverse optical phonons, whereas graphene's transverse 
plasmons couple only to longitudinal optical phonons. This is calculated within the framework of the self-
consistent linear response formalism. 
  
To understand physical mechanism behind this unusual crossing of polarizations, let us look at the band 
structure of graphene. Near high symmetry K point (shown in Fig. 1b.) electrons are described by Dirac 
cones with effective Hamiltonian given by the tight-binding approximation [1]:  
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If we now imagine a collective oscillation of electrons, i.e. a plasmon, we can describe it with a mean 

field vector potential A


 (scalar potential is gauged to zero) which acts on the electrons in a self-

consistent way. To quantify this interaction we use a general substitution Aekk
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
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  in Eq. (1), so 

that electron-plasmon interaction can be written as: 
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Turning our attention to phonons let us first assume that 2/)( BA uuu


 denotes a small 

displacement of the atoms A and B in the basis as shown in Fig. 1c. Within tight-biding approximation 
this results in the interaction Hamiltonian given by (see [3] and Refs. therein): 
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When comparing this to Eq. (2) one can see that Eq. (3) is equivalent to the presence of an effective 

vector potential uAeff


which simply shifts original Dirac cone to a new position as show in Fig. 1d. 

The peculiar property of graphene is that vector effA


 is perpendicular to the displacement vector u


 so 

that the oscillation of logitudinal (transverse) optical phonons creates an effective vector potential, and 
thereby an effective electric field, in the transverse (longitudinal) direction. On the other hand, since 
longitudinal (transverse) plasmons are accompanied by longitudinal (transverse) electric field this will 
lead to the mentioned crossing of polarization of the two collective excitations. The plasmon-phonon 
coupling will be greatest when phonon energy and momentum match that of the appropriate plasmon 
mode since then the effective electric field created by phonon will have a huge response due to 
collective motion of electrons. These points are clearly shown in Fig. 2.  
  
Finally we note that the frequency shift of the transverse optical phonon due to interaction with collective 
electron excitations (Fig. 2a.) is much larger than the one where phonon interacts with single particle 
excitations which was recently measured in the Raman experiment [2]. In this context plasmon-phonon 
coupling can serve as a magnifier for exploring the electron-phonon interaction in graphene, while it also 
offers novel electronical control over phonon frequencies. To point out the technological implications we 
note that there has been an increased interest for plasmons in graphene in the context of plasmonics 
and metamaterials and we have shown in another paper [5] that plasmon-phonon interaction plays an 
important role there.   
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Fig. 1. (a) Bravais lattice of graphene with two atoms A and B in the basis. (b) Brillouin zone with Dirac 
cones at K and K’ points. (c) displacement of basis atoms corresponding to the profile of optical phonon 
mode and (d) the resulting movement of the Dirac cones which can be described trough the action of 

effective vector potential uAeff


. We also show in figure (c) the orientation of wave vector q


 for 

different polarizations of phonon modes. 
 

       
 
Fig. 2. Dispersion relation for coupled: (a) longitudinal plasmon-transverse optical phonon mode at 

doping value eVEF 82.0 , and (b) transverse plasmon-longitudinal optical phonon mode for doping 

value eVEF 1.0 . The coupled (uncoupled) modes are depicted by solid (dashed) lines and note that 

phonons are effectively dispersion-less for these wave vectors. Finally note that, since dispersion 

relation of transverse plasmons is very close to the light line, we plot cqq /  on ordinate axis in 

figure (b). 


