Imaging Coherent Electrons in Graphene
Sagar Bhandari1, Jesse Berezovsky$^{1, *}$, Mario Borunda2, Eric Heller$^{2, 3}$, Robert Westervelt1

1School of Engineering and Applied Sciences, 2Department of Physics, 3Department of Chemistry, Harvard University, Cambridge, MA 02138, U.S.A
sbhandar@fas.harvard.edu

*Jesse Berezovsky, now at the Dept of Physics in Case Western University

Graphene is an exciting new material which provides a test bench for new kinds of experiments. We use a cooled scanning probe microscope (SPM) to probe the motion of electrons in graphene. At low temperatures, the coherent interference of electron waves scattered by disorder leads to universal conductance fluctuations (UCF) and weak localization effects. Using the SPM tip as a local movable scatterer, images of magnetoconductance versus tip position are obtained that show how electron interference is affected by the tip position. The weak localization dip in conductivity at zero magnetic field is obtained by averaging the magnetoconductance traces at different tip positions. The width of the dip yields the coherence length of electrons. For UCF we find conductance images that resemble speckle patterns, that change by $G \sim e^2/h$ when the tip moves by half the Fermi wavelength.

References:

Figures:

Figure 1: SPM tip as a local scatterer in graphene hall bar sample

Figure 2: Conductance image vs. tip position: (a) Far from the dirac point , (b) Near the dirac point
Figure 3: A series of conductance image vs. magnetic field at constant back gate voltage $V_g = 0V$

Figure 4: Weak localization conductance dip in the sample (a) tip far from the sample with different carrier densities, (b) tip close the sample at different positions but fixed density