SPECTROSCOPIC STUDY OF CARBON NITRIDE NANOPARTICLES SYNTHESISED BY LASER PYROLYSIS UNDER OXIDISING ATMOSPHERE

B. Bouchet-Fabre, E. Marino and C. Reynaud

L.F.P., SPAM, CEA- Saclay, 91191 Gif sur Yvette cedex, France

Introduction. The study of the amorphous carbon-nitrogen alloys (a-CN_x) films have shown that the structural, electronic and mechanical properties, which are strongly dependent on the bonding configuration structure (sp¹, sp², sp³), can be deeply modified by hydrogen and nitrogen incorporation [¹, ², ³, ⁴]. The incorporation of nitrogen is in turn greatly influenced by the preparation methods. The effects of nitrogen differ when nitrogen atoms enter the sp² clusters, by modifying the π -bond states distribution or the sp³ network [⁵].

Experimental purpose. To understand the incorporation conditions of nitrogen, CNx nanopowders were synthesised by laser pyrolysis which method has been improved for the elaboration of carbon particles [⁶]. We present here the laser pyrolysis synthesis of nanosized carbon nitride powders obtained via the injection of a mixing of gaseous precursor ethylene (C_2H_4), mono-methyl-amine (MMA) as nitrogen provider under oxidising atmosphere through a flow of N₂O. Indeed we already know that an oxidant atmosphere, promotes the formation of structured carbon nano-particles as fullerenes for a ratio C/O close to 1.2 in the gas mixture [⁷]. The spectroscopic study of CNx nanopowders is reported: the bonding structure was determined using Infrared analysis (FTIR) and the nano-texture followed by electron microscopy. The electronic structure is deduced from Near Edge X-Ray Absorption Fine Structure (NEXAFS) study,

Results. The different characterisations point out a nitrogen incorporation up to 20% [⁸]. Those concentrations increase when the ratio C/O decreases. Furthermore we note an evolution of both the carbon-carbon and the carbon-nitrogen bonding type with C/O and the nitrogen concentration. The carbon sub-network is mostly sp² and depends on the C/O ratio at low nitrogen incorporation. A good correlation is found between the evolution of the empty π^* electron states and the evolution of the bonding configuration. These results will be compared to the characteristic features shown by the bonding and electronic structure of the sp² CNx films, elaborated by radio-frequency magnetron sputtering (RFMS) [⁹, ¹⁰]. We show

that the evolution of the electronic structure in highly concentrated powders is due to conjugation configurations involving $C \equiv N$ bonding.

- ¹ J. Robertson, Mat. Sci. and Eng. R37 (2002) 129.
- ² G. Fanchini, A. Tagliaferro, G. Messina, S. Santangelo, A. Paoletti, A. Tucciarone, J. Appl. Phys. 91 (2002) 1155.
- ³ A. K. M. S. Chowdhury, D. C. Cameron, D. S. J. Hashmi, Thin Solid Films 322 (1998) 62.
- ⁴ S.E. Rodil, A.C. Ferrari, J. Robertson , S. Muhl, Thin Solid Films 420-421(2002) 122.
- ⁵ D.F. Franceschini, C.A. Achete, F.L. Freire Jr., Appl. Phys. Lett. 60(1992) 3229.
- ⁶ N. Herlin-Boïme, I. Bohn, C. Reynaud, M. Cauchetier, A. Galvez , J.N. Rouzeaud, Astron. Astrophys. 330(1998) 1127.
- ⁷ F. Tenegal, I. Voicu, X. Armand, N. Herlin-Boime, C. reynaud, Chem.Phys.Lett. 379(2003) 40.
- ⁸ E.Marino, B.Bouchet-Fabre and C.Reynaud , Diamond Relat. Mat.14 (2005) 1120.
- ⁹ N. Mubumbila, B. Bouchet-Fabre, C. Godon, C. Marhic, B. Angleraud, P-Y. Tessier, and T. Minea, Diamond Relat. Mater. 13(2004) 1433
- ¹⁰ B. Bouchet-Fabre, E. Marino, G. Lazar, K. Zellama, M. Clin, D. Ballutaud, F. Abel, C. Godet, Thin Solid Films 482 (2005) 167.