NANOMETER-SIZED Eu³⁺ DOPED In₂O₃ SEMICONDUCTOR PARTICLES. SYNTHESIS, STRUCTURAL CHARACTERIZATION AND LUMINESCENT PROPERTIES

J. del-Castillo¹, A.C. Yanes¹, V.D. Rodríguez², J. Méndez-Ramos², M.E. Torres¹ and J. Peraza¹

 ¹Dpto. Física Básica, Universidad de La Laguna, 38206 La Laguna, Tenerife, SPAIN e-mail: <u>ayanesh@ull.es</u>
²Dpto. Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, 38206 La Laguna, Tenerife, SPAIN e-mail: vrguez@ull.es

At the present time, there is an increasing attention for the applications of nanoparticles to photonic systems owing that their small dimensions imply enhanced luminescent properties¹. On the other hand, rare earth (RE)–doped materials are also attractive in the area of photonic applications². These considerations motivate to study the optical properties of RE doped nanoparticles. With the appropriate choice of host matrix and RE doping, the optical properties of a material could be improved considerably. In this respect, Indium Oxide (In₂O₃) is an interesting n-type semiconductor material with a wide band gap (E_g=3.6 eV at 300 K) with different applications in optical and electric devices³, solar cells, liquid crystal devices⁴, gas sensors⁵, etc.

Nanosized In_2O_3 particles doped with Eu^{3+} embedded in a silica matrix have been synthesized by thermal treatment of sol-gel glasses prepared with different compositions. The segregated In_2O_3 nanocrystals present a size distribution depending on the preparation conditions. They have been characterized by High Resolution Transmission Electron Microscopy (HRTEM) and X-ray Diffraction (XRD). For a glass composition of 90SiO₂-10In₂O₃, with 0.4 mol % of Eu^{3+} and heat treatment at 900°C, the obtained average radii were around 3 nm. This value is comparable to the bulk exciton Bohr radius of 2.38 nm in In_2O_3 , resulting a wide band-gap semiconductor quantum-dot system of In_2O_3 immersed in a glassy insulator of SiO₂. In these strong confinement conditions the energy gap increases appreciably when the nanocrystal size decreases⁶. The Eu^{3+} ions located in the In_2O_3 nanocrystals could be excited selectively by energy transfer from the semiconductor host^{7.8}. Moreover, the spectroscopic properties of these Eu^{3+} ions in the In_2O_3 nanocrystals were compared with those of the ions remaining in the silica glassy matrix.

^[1] C.B. Murray, C.R. Kagan and M.G. Bawendi, Science **270**, 1335 (1995).

^[2] A. Patra, C.S. Friend, R. Kapoor, and P.N. Prasad, Appl. Phys. Lett. 83, 284 (2003).

^[3] M. Emziane and R. Le Ny, Mater. Res. Bull. 35, 1849 (2000).

^[4] I. Hamberg and C.G. Granqvist, J.Appl. Phys. 60, 123 (1986).

^[5] J. Xu, Q. Pan and Y. Shun, J. Inorg. Chem. 14(3), 355 (1998).

^[6] M. Nogami, T. Enomoto and T. Hayakawa. J. Lum. 97, 147 (2002).

^[7] A.C. Yanes, J. del Castillo, M.E. Torres, J. Peraza, V.D. Rodríguez and J. Méndez-Ramos, Appl. Phys. Lett. **85**, 2343 (2004).

[8] J. Del Castillo, V.D. Rodríguez, A.C. Yanes, J. Méndez-Ramos and M.E. Torres, Nanotechnology. **16**, 300 (2005).

ACKNOWLEDGEMENTS: J. del-Castillo would like to thank "Universidad de La Laguna" (Beca asociada al SEGAI) for financial support.

TOPICS: Nanophysics, nanomaterials and nanotechnology.

PREFERENCE: Poster