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 In order to provide accurate predictions for state-of-the-art devices, the quantum mechanical 
(QM) theory gradually upgrades (by including concepts such as tunnelling, quantization,..) the different 
approaches used for modelling electron transport. Recently, CMOS has been demonstrated to be a viable 
technology for very-high-bit-rate broadband and wireless communication systems up to 40 Gb/s and 50 
GHz [1]. Therefore, a study of the novel effects that the QM theory can introduce on the performance of 
phase-coherent devices driven at high frequencies, f, comparables to the inverse of the electron transit 
time, seems mandatory. In this work, we compare the classical and quantum small-signal admittance 
parameters for a nanoscale double gate MOSFET with an intrinsic channel of L=15 nm length and t=2nm 
width, that provides transport through a two-dimensional (2D) electron gas, (see fig. 1).  
 

First, using a classical Monte Carlo (MC) technique [2], we analyze the transconductance (i.e. the 
Y21 small-signal admittance parameter) by Fourier-transforming the transient current after a small step 
gate voltage perturbation [3]. The role of the acoustic and optical phonon scattering (for 2D electron gas 
[4]) on the transconductance is analyzed in figs. 2 and 3. The unavoidable collisions of 2D electrons with 
phonons slightly reduce the current and increase the transit time (reducing the operating frequency). The 
final delay is proportional to the device length, L, and inversely proportional to its width, t, (due to the 
form factor of the 2D phonon scattering rates [4]). The expected analytical behaviour of the AC-
transconductane as a function of the oscillating frequency, τπfj

oegfY 2
21 )( −= , is also depicted in fig. 3 

where go is the DC-transconductance and τ the delay time.  
 

Second, using an approach based on the Floquet theory [5], we analyze the role of the wave-like 
nature of electrons on Y21. For the AC conditions depicted in fig 4, the quantum transport properties are 
determined by the spatial and also by the temporal phase-coherence of electrons. The time dependent 
Schrödinger equation (TDSE) is numerically solved for wave-packets using the oscillating potentials 
depicted in fig. 4. The QM current under AC conditions is computed from the dynamic transmission 
coefficient obtained from previous wave packets within the appropriate energy range [5]. Assuming small 
bias conditions, the QM admittance parameter Y21 is computed, using the steady-state transfer function 
[3], as the ratio between the complex AC current and the complex sinusoidal gate voltage.  

 
The comparison between the transconductance behaviours obtained from the classical MC and 

quantum TDSE approaches are depicted in fig. 3. One dimensional non-selfconsistent potential profiles 
are used for all simulations. The differences between the full QM treatment and the classical results (with 
or without scattering) can be explained as a consequence of the wave-like (i.e. non-local) nature of 
electrons: the QM electrons ‘feel’ the potential oscillations in a broader space-time region than classical 
ones (see fig. 5). On the other hand, for low frequencies the results are comparable because the QM and 
classical transit times are quite similar (as seen in fig. 6). As expected, all results depend on the electron 
effective mass, but are independent of the shape of the wave packets (see fig 6).  

 
The present results (summarized in fig. 3) provide a serious restriction towards the possibility of 

reaching THz cut-off frequencies, even for aggressively scaled Si transistors. Present results have to be 
interpreted as the ‘ultimate’ frequency limit for nanoscale MOSFET. On the other hand, the explicit 
consideration of the electron-electron interactions on the classical or QM formalisms will contribute to a 
reduction of such ‘ultimate’ cut-off frequencies. Future work will follow this path through the 
construction of a 3D Poisson solver for nanoscale MOSFET.  
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Figures 

 
Fig 1: Current vs. voltage characteristics for the DG MOSFET. The           Fig 2: The MC (non-self consistent) results of the current transient                 
MC results include energy quantization and 2D-degenerate injection.         response to a gate step voltage, 0.1V,  while the VDS is fixed. 

 
Fig 3: Transconductance frequency response. Symbols Ο/ � ,  MC        Fig 4: Oscillating (non-self consistent) energy potential profile Inset: 
with/without scattering. Solid line and ◊, Quantum TDSE. Dotted        Maximum of Ex(x,t) for a cos/sinusoidal oscillating gate voltage. 
lines correspond to the expected analytical response for differentτ . 

 
Fig: 5: Classical (thin solid line) and QM trajectories (thick solid line)       Fig 6: Classical and QM transit time as a function of the gate    
for a E=0.22 eV electron interacting with a Gaussian pulse. The QM            frequency. The shapes are different, but both values are quite 
non-local dynamics are computed using Bohm trajectories.                          similar and independent of the wave-packet dispersion σ , for 
                                                                                                                        a  fixed (Si or AsGa) effective mass.   
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