ENZYME NANO-LITHOGRAPHY

Rodica E. Ionescu¹, Robert S. Marks^{1,2}, Levi A. Gheber^{1,2}

Department of Biotechnology Engineering¹, Institute for Applied Biosciences², Ben-Gurion University of Negev, P.O. Box 653, Beer-Sheva 84105, Israel

We present the use of a proteolytic enzyme to create nanometer-size depressions (wells and channels) in a protein surface. This was achieved by delivering trypsin via a nanopipet, controlled with a scanning probe microscope, to a bovine serum albumin film. In the case of wells formation we suggest a comprehensive model, explaining the processes involved and providing ways to control the parameters governing them. Also, by modulating the lateral movement of the sample at different velocities, we show a clear dependence of the sizes of the channels (widths and depths) with the amount of trypsin deposited. An attempt to demonstrate nano-fluidics in the nano-channels will be presented. Enzyme nanolithography should be useful in areas of nano-biotechnology, such as nanobiochips, nanofluidics, and lab-on-a-chip.