Modelling of the adsorption of C_{60} on the $\mathrm{Au}(110)$ surface ${ }^{[1]}$

Richard J. Baxter, ${ }^{[a, b]}$ Petra Rudolf, ${ }^{[\mathrm{cc}]}$ Gilberto Teobaldi,,${ }^{[a]}$ Francesco Zerbetto ${ }^{[a]}$
[a] Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna (Italy), Fax: +39 051 2099456, Phone: +39 051 2099473, E-mail: ilberto.teobaldi2@studio.unibo.it: [b] Department of Materials, University of Oxford Parks Road, Oxford OX1 3PH (UK); [c] Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands).

Abstract

A simple approach based on (i) the glue model for gold, ${ }^{[2]}$ (ii) an empirical force field ${ }^{[3]}$ for C_{60} and (iii) the charge equilibration ${ }^{[4]}$ plus the Born-Mayer potential for their interaction shows that the two experimentally detected structures for C_{60} on $\mathrm{Au}(110)^{[5,6]}$ are competitive from 100 K . The model further shows the different nature of the $\mathrm{Au}-\mathrm{Au}$ and $\mathrm{Au}-\mathrm{C}_{60}$ interactions inside the two unit cells, which makes one structure prevail over the other as a function of the experimental conditions. More specifically, the calyx-like structure of ref. [6] is favoured by metal-organic interactions, while the regular structure of ref. [5] is characterized by a remarkable stability of the Au surface.

Figure 1: a) the idealized gold overlayer of the structure of ref. [5], b) the optimized gold overlayer of the structure of ref. [5]; c) the idealized gold overlayer of the structure of ref. [6], d) the optimized gold overlayer of the structure of ref. [6]; e) C_{60} on $\mathrm{Au}(110)$ following ref. [5] at 300 K , the tips of the arrows indicate the location of the atoms in the ideal icosahedral configuration (the size of the arrows is multiplied by a factor of 10 to assist the eye); f) C_{60} on $\mathrm{Au}(110)$ following ref. [6] at 300 K , the tips of the arrows indicate the location of the atoms in the ideal icosahedral configuration (the size of the arrows is multiplied by a factor of 10 to assist the eye).

References

[1] R. J. Baxter, P. Rudolf, G. Teobaldi, F. Zerbetto, ChemPhysChem 2004, 5, 245.
[2] F. Ercolessi, M. Parrinello, E. Tosatti, Philos. Mag. A 1988, 58, 213.
[3] N.L. Allinger, Y.H. Yuh, J.-H. Lii, J. Am. Chem. Soc. 1989, 111, 8551.
[4] A.K. Rappé, W.A. Goddard III, J. Phys. Chem. 1991, 95, 3358.
[5] J.K. Gimzewski, S. Modesti, R.R. Schlittler, Phys. Rev. Lett. 1994, 72, 1036.
[6] M. Pedio, R. Felici, X. Torrelles, P. Rudolf, M. Capozi, J. Rius, S. Ferrer, Phys. Rev. Lett. 2000, 85, 1040.

