Photonic Hall-effect for a single nanoparticle

Irene Suárez-Lacalle and Juan José Sáenz

Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.

Quantum Hall effect arises when electrons are subject to a large magnetic field due to the fact that electrons experience a Lorentz force as they are charged. Despite the absence of photonic charge, it has been observed that a similar effect, a photonic Hall-effect, appears when light is subject as well to a magnetic field, although the origin of the effect is very different.

This photonic Hall-effect, or magneto-transverse anisotropy, in light scattering, is of actual interest and is the basis of interesting phenomena [1,2]. The Hall effect of a single scatter is important by itself. In particular, Hall effect for a Mie sphere has been addressed long before [3]. In these studies it was argued that in the small particle regime (the so called Rayleigh scattering regime) there were no net magneto-transverse scattering effects [3].

Radiative corrections have shown to be important to analyze magneto-optic properties of small nanoparticles [4]. As we will show, Optical Hall-effect in small dipolar particles does exist, arising as a consequence of the radiative corrections to the polarizability.

References

[1] Z. Wang, Y. Chong, J.D. Hoannopoulos & M. Soljacic, Nature 461, 772 (2009)

[2] F.D. Haldane, S. Raghu, Phys. Rev. Lett., **100**, 013904 (2008)

[3] D. Lacoste, B.A. van Tiggelen, G.L.K.A. Rikken, A. Sparanberg, J. Opt. Soc. Am., **15**, 1636 (1998)

[4] S. Albaladejo et al., Opt. Express 18, 3556 (2010).