Ultra low threshold room temperature lasing on photonic crystal microcavities with quantum wires

L.J. Martínez, I. Prieto, B. Alén, D. Fuster, Y. González, L. González, M.L. Dotor, L.E. Muñoz, M. Kaldirim and **P.A. Postigo** Instituto de Microelectrónica de Madrid (IMM-CNM-CSIC) Isaac Newton 8 –PTM- Tres Cantos 28760, Madrid, Spain email: <u>pabloaitor.postigo@imm.cnm.csic.es</u>

Room temperature (RT) lasing in photonic crystal microcavities has been demonstrated around 1.3 μ m using five stacked self-assembled InAs QD layers as active material [1-2]. Bordas *et al* recently reported a compact photonic crystal microlaser at RT with a single plane of InAs/InP quantum dots as gain medium [3]. Baba et al [4] showed RT lasing at 1.5 μ m on quantum wells on InP with thresholds around 1.2 μ W of effective pump power and Q=20000. Finally, a value of Q up to 28000 was reported by Frédérick *et al* [5] on InP- PC microcavities. In this work we show, for the first time, room temperature lasing at 1.5 μ m in photonic crystal microcavities with a single layer of self-assembled quantum wires. Ultra low threshold values around 10 μ W have been measured, along record quality factors exceeding Q=55000 using L7-type photonic crystal microcavities. Solid-source molecular beam epitaxy has been used for the synthesis of the InP/InAs epitaxial material comprising a single layer of InAs QWRs [6]. Fabrication procedure relies on electron-beam lithography and reactive ion beam etching techniques [7]. The main axis of the cavity is always parallel to the QWRs, which grow along the [1-10] direction. No lasing has been obtained for L7 cavities with axis parallel to the [110] (i.e., perpendicular to the direction of the QWRs). This shows the strong one-dimensional character of the QWRs inside the photonic cavity.

References

[1] M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, Opt. Express 14, 6308-6315 (2006).

[2] T. Yoshie, O.B. Shchekin, H. Chen, D.G. Deppe, and A. Scherer, Electron. Lett. 38, 967-968 (2002).

[3] F. Bordas, Ch. Seassal, E. Dupuy, P. Regreny, M. Gendry, P. Viktorovich, M. J. Steel,

and A. Rahmani, Opt. Express 17, No. 7, 5439-5445 (2009)

[4] Kengo Nozaki, Shota Kita and Toshihiko Baba, Opt. Express 15, No. 12, 7506-7514 (2007)

[5] Simon Frédérick, Dan Dalacu, Jean Lapointe, Philip J. Poole, Geof C. Aers, and Robin L. Williams, Appl. Phys. Lett. **89**, 091115 (2006)

[6] F. Suárez, D. Fuster, L. González, Y. González, J. M. García, and M. L. Dotor, Appl. Phys. Lett. 89, 091123 (2006)

[7] L.J. Martinez et al. Submitt. to J. Vac. Sci. Tech. B (2009)