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Recent advances in nanotechnology and nanoscience involving materials with magnetic properties 
(magneto-optical materials) [1,2,3,4] as well as those with unconventional optical properties 
(metamaterials) [5,6] have been performed, awakening a growing interest in this matter. The possibility 
of modeling the properties of such materials, and even design them in a customized way, is highly 
appreciated and currently constitutes a hot point. Furthermore, comparison and further agreement 
between experimental results and some theoretical framework is a constant requirement by researchers 

in those fields. In particular, the presence of a relative magnetic permeability r different from 1 (even 
negative or tensorial) requires the revision and upgrading of the commonly available electromagnetic 
numerical methods [7,8].  
 
In this sense, our Group has been working, during the last years, in the generalization of some widely 
used numerical methods, such as the extinction theorem [9]. Other approaches include Mie theory 

applied to materials with arbitrary optical constants  and  [10,11] and the discrete dipole 
approximation (DDA by its acronym in English) [12,13,14,15]. In this work we focus on the second: an 

extension of the DDA to the case of bianisotropic materials (both  and  tensorial magnitudes) [16]. 
The use of commercial software, like COMSOL, FDTD or DDSCAT (based on DDA), is helping as well 
to understand the required new point of view. 
 
In this research we present an overview of the formalism of this extension together with some early 
results showing the potential of this new tool, and also verifying its reliability. At present, extinction, 
absorption and scattering cross-sections can be readily obtained, including scattering patterns at any 
given plane, and dipole moment distributions (3D) for p and m (electric and magnetic). Polarimetric 
calculations can also be accomplished for any given incident wave polarization. Also, inhomogeneities 
can be taken into account, providing a good position to study systems involving more than one material, 
like nanoshells [17]. 
 
To check the reliability of the code, we have performed some calculations on systems at reach for 
conventional methods. Two examples are displayed in the next figures. Figure 1 shows the well-known 

zero-backscattering feature of a small particle (R 0.01 ) satisfying Kerker’s condition ( = ) [18]. Figure 
2 shows the extinction efficiency of both a gold sphere of radius R=20 nm, and a sphere with a dielectric 

( =2) core (inclusion) of radius R=12 nm and a metallic (gold) shell, for an external radius R=20 nm. 
Comparison between our code [16] and the well-proved DDSCAT code from B. T. Draine [14,15] is also 
presented. 
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Figure 1: Scattering pattern of a sphere of radius R 0.01  satisfying Kerker’s condition ( = =2). The 
scattering plane coincides with the incident plane, with the incident wave being P-polarized.  

 

 
 

Figure 2: extinction efficiency of both a gold sphere of radius R=20 nm, and a sphere with a dielectric 

( =2) core (inclusion) of radius R=12 nm and a metallic (gold) shell, for an external radius R=20 nm. 
Comparison between our code and the well-established DDSCAT code is also provided.  
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