Nanowire-based One-Dimensional Electronics (NODE)

Lars Samuelson

Lund University, Nanometer Consortium, Sweden

lars.samuelson@ftf.lth.se

The integrated project "NODE" is developing and evaluating technologies for growth and processing of semiconductor nanowire devices for their possible impact as key add-on technologies to standard semiconductor fabrication. The partners in NODE work on generating a deepened understanding of the physics phenomena of one-dimensional semiconductor materials and nanowire-based devices, and on developing new functionalities not found in traditional higher-dimensional device structures.

A set of key device families based on semiconductor nanowires are studied in detail; such as tunneling devices, field-effect transistors, and bipolar transistors. Also unique opportunities that may be offered by nanowires in different areas are explored, e.g. memory applications, high-temperature transistors and on-chip-realization of optical devices. NODE is making a dedicated effort to evaluate the potential for integration of nanowire-specific processing methods and to assess the compatibility with requirements from conventional semiconductor processing, as well as evaluating novel architectural device concepts and their implementation scenarios.

Participants	Country
Lunds universitet	Sweden
Philips Electronics Nederland B.V.	Netherlands
Technische Universiteit Delft	Netherlands
Max Planck Gesellschaft zur Foerderung der Wissenschaften	Germany
Bayerische Julius – Maximilians Universität Würzburg	Germany
Scuola Normale Superiore	Italy
IBM Research GmbH	Switzerland
Interuniversitair Micro-Elektronica Centrum vzw	Belgium
Qumat Technologies AB	Sweden
Qimonda Dresden GmbH & Co. OHG	Germany
Commissariat á l'Energie Atomique	France
NXP Semiconductors Belgium NV	Belgium

Expected end results

At the end of the project, a selection of the most promising nanowire technologies will have been made and the incorporation of nanowire devices into Si-technology demonstrated. More specifically the expected end results are:

- electronic devices based on semiconductor nanowires have been built and evaluated:
 - NW-based transistors with increased frequency response and decreased power consumption
 - Nanowire logic elements
 - Nanowire-based memory structures
- nanowire growth and related nanostructuring have been assessed in terms of up-scalability and Si-integration potential
- The potential for novel device designs using nanowires has been explored

Oral contribution