Pico-Inside

« Computing Inside a Single Molecule using Atomic Scale Technologies »

Can a single molecule compute by itself?

Pico-Insiders

P1.1: Toulouse P1.2: Paris P1.3: Orsay P2: Fujitsu P3: Berlin P4: Krakow P5: Osnabrück P6: Aarhus P7: Basel P8: Omicron P9: Prague P10: Tarragona P11: KCL P12:UCL P13: Madrid

Unit 1 Intramolecular Architecture

Option 1: An intramolecular semi-classical XOR gate

Option 2: Quantum Hamiltonian computing

1/2 adder optimisation

3D Restricted Bloch sphere Generated by $|\phi(0)\rangle \&$ |OUTPUT> states

(0,1) input

Pico-Inside

(0,1) input

(1,1) input

N = 5 quantum states hypersphere of dimension 24

Molecule ½ adder

input	RXOR	R_{AND}		
00	79.7 $G\Omega$	516.0 $G\Omega$		
01	4.79 $G\Omega$	$3.46~G\Omega$		
10	$1.86~G\Omega$	$1.13~G\Omega$		
11	$147.0~G\Omega$	$6.22~M\Omega$		

196 Molecular orbitals

5 are « computing »

Molecule OR, AND, NOR, XOR, CNOT have been optimized

Nanolett. Submit.

Surface implantation?

Unit 2 Single molecule(s) on surface LT-UHV-STM & LT-NC-UHV-AFM

Single molecules on NaCl/Cu(111): Indigo

(a) STM image of a molecule on a step edge at V=+1.5V,(b) LUMO of the free molecule.

Orbitals are resolved Good agreement with calculations at the extremities of the molecule, but less in the centre

Ultra-thin KBr islands on InSb(001)

Images taken at 77 K

Adsorption of hexaphenyl on CaF₂ striped phase

-2-2-2-2-2-

0.2 L Hexaphenyl adsorbed at 5K

PA 60 > S Ņ II **Vs**

<u>Tip manipulation</u>

Voltage pulses

P1.3 Orsay

Vs = -3.5 Volts, 1 nA, 4 sec.

⇒Single hexaphenyl molecules can be aligned and positioned along insulating CaF_2 stripes on Si(100)

NC-AFM the perylene derivative on rutile $TiO_2(110)$

Pico-Inside

Unit 3 Atomic scale technology for surface interconnects

1st step: ultraflat nano-island on a semi-conductor surface

Growth and self-assembling of nanostructures on semiconductor

Au/InSb(001)

UHV-STM construction of a planar 4 nano-contacts on MoS2

before

after

2nd step: Atomic to nanoscale interconnects

Manipulating a single H on Si(100)H

Manipulating a single H on Si(100)H

n-doped Si(100) Low temperature-STM (5 K) -1.7V 69pA

4 nm

 H
 Si Dangling Bond

- Surface voltage pulse of +2.5V: Desorption of the H atom
- ➡ Creation of a Si dangling bond
- Surface voltage pulse of -2.5V:
 H-atom lateral displacement

The H-atom lateral displacement is reversible

3rd step: interconnects from the nano to the macroscale?

(Preserving the atomic precision)

High aspect ratio tips. Bases are far apart.

Omicron 4 probes UHV 50 K + SEM Gemini (10 KeV, 400 pA)

Fine Navigation under the SEM

- Two target islands (green)
- Reference islands (yellow) marked for visual identification

Pico-Inside

Fine Navigation

- Two tips on target islands
- Electrical contact, 5nm indentation
- Transport measurement between two islands

Surface Transport Measurement between two islands

Theory of surface interconnect using N-ESQC

6112 Surface atoms, 225 Au atoms per nano-island & 284 per metallic tip

N-ESQC test

NATOM	NDIMOL	SIZE	NATOM	NDIMOL	Virtual Mem		Solver Time	1 point
atoms	orbitals	nm	dimensions	maximum	Gb	Res Mem Gb	(S)	Time (s)
96	378	1.72	1000	2000	1.9	0.074	120	60
228	876	27	1000	2000	2	0.128	284	76
408	1560	3.68	1000	2000	21	0.242	1607	103
636	2436	4.67	1000	3000	3.4	0.536	6021	125
912	3504	5.65	1600	5000	6.5	1	19589	143
1236	4764	6.63	1600	5000	7.1	1.8	45186	200
1608	6216	7.61	1800	6500	10.1	3.1	108412	289
2028	7860	8.6	2100	7900	14.3	5.4	222645	415
2496	9696	9.58	2500	10000	20.8	7.3	440000	570

4188

14,48

16356

Theory of surface atomic scale circuit electronic transport

N-KESQC on Si(100)H

N-ESQC on MgO

Unit 4 The Chemistry

The Helicene series for interconnects

Hetero-helicenes

extended helicenes

A semi-classical OR gate based on tunnel exponential decay

Molecule OR Polyaromatic Hydrocarbons

Molecular templates for the formation of atomic nanostructures

Science 296, 328 (2002)

First molecule (A) : bis(diaminotriazine)lander

Unit 5 Theory of molecule on surface

With Fujitsu Europe

STM calculations Molecule on a metallic surface

Molecule A

26 Å× 30 Å ESQC image

22 Å× 16 Å Experiment (Aarhus)

Molecule A' on Cu(110)

Pico-Inside

AFM calculations <u>CaO(001) surface</u>

-0.08

-0.06

-0.04

-0.02

-0.18

-0.14

-0.1

0.06

0.02

Atomic-scale contrast obtained with vAFM

MgO tip

Topography

Dissipation

Mg-terminated tip

O-terminated tip

Frequency shift: - 279 Hz

Large molecule: Full geometry optimisation using the new ASED+ semi-empirical method & STM constant current STM images

Small molecule: Full geometry optimisation using the new DFT technique

Emerging nano-electronics

Welcome in Pico-Inside

Unit 6: The Phantom Foundation