2nd EU/FET Cluster meeting – Las Palmas de Gran Canaria (Spain) November 14, 2007

CATHERINE

Carbon nAnotube Technology for High-speed nExt-geneRation nano-InterconNEcts

Prof. M.S. Sarto

Scientific Coordinator

Research Center on Nanotechnology applied to Engineering – Sapienza University of Rome mariasabrina.sarto@uniroma1.it

Outline

Consortium Objectives & Innovation Workplan

Consortium

1	Consorzio Sapienza Innovazione. Dr. S. Trueman (Project Manager)
2	Sapienza Univ. of Rome - CNIS. Prof. M.S. Sarto (Scientific Coordinator)
3	Technical University of Delft. Dr. K. Zhang
4	Universite Paul Sabatier Toulouse III - UPS. Dr. L. Ararault
5	Università degli Studi di Salerno. Prof. P. Ciambelli
6	Latvijas Universitates Cietvielu Fizikas Instituts. Dr. Y. Zhukovskii
7	IMT Bucuresti. Dr. A. Dinescu
8	Swedish Defence Research Agency. Dr. M. Hoijer
9	Istituto Nazionale di Fisica Nucleare. Dr. S. Bellucci
10	Philips Electronics Nederland B.V. Dr. O. van der Sluis
11	Smoltek AB. Dr. S. Kabir

Consortium

	University	Res. Org.	Industry	SME
Italy	× ×	×		×
The Netherlands	×		×	
Sweden		×		×
France	×			
Romania		×		
Latvia		×		

Project objectives & Innovations

- To develop an innovative cost-effective and reliable technological solution for high-performance nextgeneration nano-interconnects beyond the limit of current technology with:
 - high-transmission speed
 - □ high current density,
 - exceptional mechanical and thermal properties
 - optimum signal and power integrity
- The new approach exploits the carbon nanotube technology

Fabrication process:

J. Lin, Q. Ye, A. Cassell, H.T. Ng, R. Stevens, J. Han, M. Meyyappan, *Applied Physics Letters*, Vol.82, No.15, 14 April 2003

SEM

Fabrication process:

J. Lin, Q. Ye, A. Cassell, H.T. Ng, R. Stevens, J. Han, M. Meyyappan, *Applied Physics Letters*, Vol.82, No.15, 14 April 2003

Fabrication process:

M.Nihei, A.Kawabata, D.Kondo, M. Horibei, S. Sato, Y. Awan, *Japanese Journal of Applied Physics*, Vol. 44, No. 4A, 2005, pp. 1626–1628.

M.Nihei, A.Kawabata, D.Kondo, M. Horibei, S. Sato, Y. Awan, *Japanese Journal of Applied Physics*, Vol. 44, No. 4A, 2005, pp. 1626–1628.

Controlled growth of CNT interconnects inside Al₂O₃ porous membrane

CATHERINE

Side view

Top view

Controlled growth of MWCNTs by means of the control of the membrane geometrical characteristics

Closed design-fabrication-properties assessment chain

2 MAIN GOALS

G1: To develop innovative technological solution for highperformance next-generation nanointerconnects.

G2 : To develop proof-of-concept nanointerconnects to assess and verify the new proposed solution

2 PRODUCT DELIVERABLES

P1: Integrated data-base for nanointerconnect design

> P2: Proof-of-concept nanointerconnect

4 MAIN EXPECTED RESULTS

R1 : Definition of all causal relations within the design-chain "microstructure characteristics – fabrication process – functional properties"

R2: Development of multiscale multiphysics simulation models for the prediction of the multifunctional performance of the interconnect and for the EMC analysis;

R3 : Development of electromagnetic and multifunctional test procedures and experimental characterization methods

R4 : Manufacturing and testing of proof-of-concept samples of nanointerconnects at laboratory level.

Model data-base for MWCNT-nanointerconnect design

Multiscale simulation of CNT-interconnected IC backend structure

EM modelling of MWCNTinterconnect

The inter-shell distance δ is constant and equal to inter-graphene distance of 0.34 nm.

The number of shells *n* is related to the inner and outer radius of the MWCNT:

 $n = \frac{r_n - r_1}{\delta} + 1$

Equivalent transmission line circuit

	Max current density (MA/cm ²)											
	65 nn	n techn	ology	45 nm technology		30 nm technology			22 nm technology			
ITRS- 2006		3		8			13		17			
Cu	8		5			4.3			4			
MWCNT	Diameter [nm]	Total resistance [kΩ]	Max current density [MA/cm²]	Diameter [nm]	Total resistance [kΩ]	Max current density [MA/cm²]	Diameter [nm]	Total resistance [kΩ]	Max current density [MA/cm²]	Diameter [nm]	Total resistance [kΩ]	Max current density [MA/cm2]
L=5 mm	65	0.4	7.2	45	0.61	10.4	30	0.92	15.3	22	1.28	20.5
L=0.5 mm	65	0.07	43.8	45	0.10	62.6	30	0.15	92.6	22	0.21	124.1

be.

		Length [mm]	Diameter [nm]	Shell	Time delay [ps]
		10	30		0.0908
	Cu	5	30		0.0241
		0.5	30		0.00179
	MWCNT	10	30	43	0.144
\rangle		5	30	43	0.0424
1		0.5	30	43	0.00185
		10	22		0.197
	Cu	5	22		0.05
		0.5	22		0.00177
	MWCNT	10	22	31	0.178
		5	22	31	0.0526
		0.5	22	31	0.002

30 nm- and 22-nm node technology

CATHERINE

WBS

Т

٦

W P 1 M anagement	WP2 Requirements and definition	WP3 Modelling and simulation	W P 4 Fabrication	WP5 Experimental characterization	WP6 Optimizations of proof-of-concept nanointerconnect	WP7 Exploitation and dissemination
1.1 Executive Management	2.1 Functional requirements	3.1 Nano- & meso-scale modelling of growth mechanism	4.1 Membrane	5.1 Definition of test procedures	6.1 Requirements of proof-of-concept specimen	7.1 Patenting
1.2 Financial Management	2.2 Technological requirements	3.2 Electronic/electrical properties modelling	4.2 Nanoimprint lithography	5.2 Microscopy investigations and microstructure characterization	6.2 Design by simulation	7.2 Dissemination/user groups
1.3 Scientific Coordination Support	2.3 Definition of data- base format	3.3 EM modelling at radio-frequency and EMC analysis	4.3 Carbon nanotubes & nanofibers	5.3 Electrical and electromagnetic tests	6.3 Fabrication	7.3 Licensing
		3.4 Mechanical & thermal modelling	4.4 Contacts and nanointerconnects	5.4 Mechanical and thermal tests	6.4 Testing and demonstration	7.4 Workshops/ Conferences
		3.5 Integrated data-base for interconnect design				7.5 Web-site
						7.6 Publications

7.7 Joint collaboration with FET Projects