Materials and Nano Optics for Solid State Lighting

Helmut Bechtel, Philips Research Aachen

Outline

- Status and promise of solid state lighting
- Luminous efficiency and color
- LED and OLED technology
- Light extraction and nano optics
- Phosphor conversion

Market themes in Lighting

Total cost See & End user / Market 010 of ownership be seer **Awareness Environmentally** friendly **Ambiance** Lifestyle Health high decreasing interest increasing latent emerging awareness awareness awareness awareness

Retail: Examples of ambiance creation. Staging and sharing the shopping experience

Lighting to create a sense of experience that goes beyond shopping

The shop as a lighthouse in a sea of choices

Lighting that subtly directs the shopper while giving them the freedom to experience and choose

The shop as a centre of social activity

Lighting that focuses on different groups of people and their activities

Shops as interest zones

Customized to address different Communities

Experience *Litho2006 H. Bechtel*

Care

Collective

Empowerment

LED General Illumination for Off Grid Homes

Nepal 2000*

India 2001*

Sri Lanka 2003*

* Photos Courtesy of Light Up the World and PICO Power

Efficacy of Light Sources

News from *SolidStateLighting.net*: June 15, 2006... Helsinki, Finland–

- Shuji Nakamura winner of the 2006
 Millennium Technology Prize
 - Development of new, revolutionary source of light - bright-blue, green and white LEDs and a blue laser.
 - improvement of the quality of human life.
 - opportunities for significant energy-saving LED light.

Luminous Efficacy of Lightsources [lm/W]

Radiant Efficiency

Luminous flux [lm] : Power input [W]

Optical Power [W]
Power input [W]

Lumen Equivalent

Luminous flux [lm]

Radiant flux [W]

Wavelength [nm]

Color Rendering Index (CIE Pub 13.3)

Ra = 70

Ra = 50

Reference colors to be compared to Planckian (<5000K) or Standard Daylight (>5000K)

Solid State Lighting Technology

LEDs OLEDs

Positive and negative charge carriers recombine to release energy as light or heat – fundamentally non destructive

Light generation process unlimited in efficiency and life

OLED and LED efficiency

CREE, June 20 131 lm/W

LUXEON® K2 LEDs from Philips Lumileds Win New Product Showcase Award, June 6, 2006

at Lightfair International in Las Vegas

- Honored by lighting professionals for a series of technology breakthroughs
- 140 lm output (1mm²)
- 185°C maximum junction temperature
- a maximum 1500mA drive current,

LED Technology: Philips Lumileds

- Leader in high power LEDs
 - Luxeon® based light sources
 - Reference designs and IP (optical, mechanical, thermal and drivers)
 Phosphors (for white LEDs)

24 partners from 8 European countries

European project OLLA (Organic LEDs for LightingApplications) (see also: www.olla-project.org) Litho2006 H. Bechtel

PHILIPS Already achieved The lighting challenge Lighting requirements >15000h >10000 cd/m² Nb >100 lm/W rtel

Philips and Novaled announced new records for lifetime and efficiency of high-brightness white OLEDs 06/07/2006

Combination for efficiency and lifetime of highbrightness white OLEDs has been established.

- Brightness: 1000 cd/m²
- Efficiency: 32 lm/W
- CRI of 88.
- Lifetime 20000 hours

OLED Lighting outside Europe

Japan

JUNJI KIDO

USA, GE
Anil Duggal 2 ft x 2 ft (60cm)
15 lm/W, 1200 lumens

Challenges

- Cost down lumen per \$ up:
 - LEDs: 250 1000 lumen from 1 mm² chip for 2\$
 M. G. Craford, December 13, 2005
- Improve light extraction and surface brightness
 - Application of photonic crystals
- White light generation
 - Phosphors for blue LEDs

Cost – Performance Development

Arpad Bergh, George Craford, Anil Duggal, and Roland Haitz Physics Today Dec2001

A challenge for SSL: Light Extraction

Surface emission

Waveguided light (substrate)

Total internal reflection

$$\eta = 1 - \sqrt{(1 - (1/n^2))}$$

$$\eta = \frac{1}{2n^2} \text{ (for n > 1.5)}$$

The fraction of emitted light from a luminescent film is:

(classical ray optics)

$$\eta = 19 \% \text{ for } n = 1.7$$

Light extraction from LEDs

Truncated-Inverted-Pyramid LED Osram Micro-mirror LED

AllnGaN Flip-Chip LED

Osram Thin-Film LED

Light Extraction for radiating dipole

TE,

TM

Electric dipole in front of a mirror

+ interference

J.A.E. Wasey and W.L. Barnes, Journal of modern optics, 2000, 47, 4, 725

Flip-chip micro-cavity LED Extraction efficiency > 50%

p-layer thickness control required

Application of (2D) photonic crystal structures

Log magnitude Poynting vector

Design with Finite Difference Time Domain software (FDTD solutions from Lumerical Inc. www.lumerical.com) which runs on a distributed cluster of 16 workstations

Improving efficacy and surface brightness

250 nm diameter holes in GaN.

Patterning by e-beam lithography

(Sandia National Laboratories) Litho2006 H. Bechtel Wierer et. Al., Appl. Phys. Lett., Vol. 84 (19), 3885 (2004)

OLEDs with photonic crystal substrate

Young Rag Do et al., J. Appl. Phys 96 (2004) 7629

Issues:

Egalization of structure before OLED deposition

Costs on large substrates

Litho2006 H. Bechtel

Monospher Particle layer between ITO and Glass

Particle distribution essential

Monospher® (Merck) M100, M150 and M200 silica particles

Coating of 6" substrates realized

DC EL: 6V, same current

Gain: 60 percent

Phosphor Conversion for White Light Generation

Blue polymer emitting polymer OLED with yellow phosphor

- Phosphor layer enhances light extraction
- Perfect color mixing
- But: What is the lifetime of the blue emitter?

Additive Color Mixing

Litho20

Applications for White Phosphor Coated LEDS

Options for white light generation with

LEDs

- RGB LEDs
 - Potentially optimal
- Blue LED + Phosphor
 - Many advantages for Illumination
- UV LED + Phosphor
 - Efficiency?
 - Stability?

LED efficiency for different colors

Luxeon Warm White (Jazz LED)

- 'Incandescent-like" White
- YAG:Ce + CaS:Eu
- CRI 85+ (to 95)
- 2800 to 4000K
- 20-25 lm @ 350 mA
- Sulfide phosphors not process compatible
- Saturation issue
- Alternative for red needed

Eu²⁺ Phosphors

Energy level scheme Eu²⁺ ion

Emission spectra

- weak crystal field:line emission in the UV
- strong crystal field and/or high co-valency:
 band emission in the visible

SrB ₄ O ₇ :Eu	368 nm
Sr ₂ P ₂ O ₇ :Eu	420 nm
BaMgAl ₁₀ O ₁₇ :Eu	453 nm
SrGa ₂ S ₄ :Eu	535 nm
(Sr,Ca) ₂ SiO ₄ :Eu	575 nm
CaS·Fu	655 nm

Development of M₂Si_{5-x}Al_xN_{8-x}O_x:Eu EP 02102752.9, US 20030006702

Quantum efficiency > 90%, Absorption (450 nm) > 80%

Current research focused on morphology and adjustment of color point

highly condensed anionic network

An All-Nitride White LED

LL Demo LED combining Philips green SiON and red SiAlON phosphors (QE > 0.9, QE_{rel}(200°C) > 0.95)

excellent stability of color quality is achieved.

R. Mueller-Mach, G. Mueller, M.R. Krames, H.A. Höppe, F. Stadler, W. Schnick, T. Juestel, P. Schmidt, Highly efficient all-nitride white light emitting diode, phys. stat. sol. (a) 202, 1727, 2005

Nano Solutions

- Nano phosphors
 - 40 to 80 nm
 - -QE < 70% (NDT YAG)
- Quantum dots
 - -2 to 20 nm (< L_{Exciton})
 - -QE < 70%

White directly possible

Summary and Conclusions

- SSL: a disruptive innovation for lighting
 - Inorganic LEDs
 - Organic LEDs in the future
- Opportunities for nano-optical structures
 - Improve efficiency and brightness
 - Challenge in production and design
- LEDs profit from combination with phosphors
 - nitridosilicates and oxonitridosilicates
 New materials

