Towards Graphene-based heterojunction devices for microelectronic applications

Ch. Wenger¹

C.A. Chavarin¹, C. Strobel², M. Junige², J. Kitzmann¹, M. Lukosius¹, G. Lupina¹, M. Albert², J.W. Bartha²

¹IHP GmbH, Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25,
15236 Frankfurt (Oder), Germany
²Institut für Halbleiter- und Mikrosystemtechnik,
Technische Universität Dresden,
01062 Dresden, Germany

wenger@ihp-microelectronics.com

The integration of dielectrics or semiconductors on Graphene is of critical importance for the development of a new generation of Graphene-based heterojunction devices. The deposition of a high-k dielectric, like Al₂O₃ or HfO₂ or of Silicon on top of Graphene is still challenging due to Graphene's lack of dangling bonds. In this paper, two strategies for the dielectric-Graphene and Silicon-Graphene integration will be presented.

Atomic Layer Deposition (ALD) or Atomic Vapour Deposition (AVD) processes have been explored to deposit high-k dielectrics on Graphene with negligible damage of Graphene layer. However, the the nucleation of the dielectric film is hindered by the chemical inertness of the Graphene surface^{1,2}. Therefore, the initial ALD or AVD Graphene reauires arowth on a functionalization of the pristine Graphene surface reactive with groups. А functionalization by Xenon difluoride (XeF_2) has been found to provide additional nucleation sites resulting in conformal films without pinholes³. However, XeF₂ is a toxic and strong oxidizing agent, therefore the scope of our study was to test alternative fluorinating agents like Nitrogen trifluoride (NF₃) or perfluorodecyltrichlorosilane (FDTS) which are widely established in the microelectronics industry.

We present the impact of NF₃ pretreatments on transferred Graphene layers prior to the ALD of Al₂O₃ films. In addition, we investigated a pre-treatment of graphene with FDTS prior to the HfO₂ growth by AVD. We demonstrate that the FDTS self-assembled monolayer (SAM) significantly improves nucleation of HfO₂ on graphene. Wafer scale compatibility of the proposed pre-treatment can enable fast adoption for the fabrication of graphenebased devices on large-diameter wafers. Plasma enhanced CVD (PECVD) is of

interest for applications requiring low thermal budgets such as the back end of line (BEOL) (< 450°C). However, high energy ion bombardment related to plasma exposure readily correlates with worsening of material properties⁴. Heintze et al. have demonstrated, that the ion energy in the plasma decreases with increasing frequency⁵. We demonstrate, that by the use of PECVD at a very high frequency of 140 MHz, thin a-Si:H layers can be grown softly without changing the properties of the underlying Graphene significantly.

The herein presented deposition strategies for dielectrics and semiconductors on Graphene surfaces demonstrate a significant progress towards a complete fabrication scheme of Graphene-based heterojunction devices in microelectronic technologies.

References

- [1] Y. Xuan et al., Appl. Phys. Lett. 92 (2008), 013101.
- [2] F. H. Yang and R. T. Yang, Carbon 40 (2002), 437.
- [3] V. Wheeler et al., Carbon 50 (2012), 2307.
- [4] M. Kondo et al., J. Appl. Phys. 80 (1996), 6061.
- [5] M. Heintze, R. Zedlitz Journal of Non-Cryst. Solids **198-200** (1996), 1038.