Towards Graphene-based heterojunction devices for microelectronic applications

Ch. Wenger¹
C.A. Chavarin¹, C. Strobel², M. Junige², J. Kitzmann¹, M. Lukosius¹, G. Lupina¹, M. Albert², J.W. Bartha²

¹IHP GmbH, Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
²Institut für Halbleiter- und Mikrosystemtechnik, Technische Universität Dresden, 01062 Dresden, Germany

wenger@ihp-microelectronics.com

The integration of dielectrics or semiconductors on Graphene is of critical importance for the development of a new generation of Graphene-based heterojunction devices. The deposition of a high-k dielectric, like Al₂O₃ or HfO₂ or of Silicon on top of Graphene is still challenging due to Graphene’s lack of dangling bonds. In this paper, two strategies for the dielectric-Graphene and Silicon-Graphene integration will be presented. Atomic Layer Deposition (ALD) or Atomic Vapour Deposition (AVD) processes have been explored to deposit high-k dielectrics on Graphene with negligible damage of the Graphene layer. However, the nucleation of the dielectric film is hindered by the chemical inertness of the Graphene surface¹,². Therefore, the initial ALD or AVD growth on Graphene requires a functionalization of the pristine Graphene surface with reactive groups. A functionalization by Xenon difluoride (XeF₂) has been found to provide additional nucleation sites resulting in conformal films without pinholes³. However, XeF₂ is a toxic and strong oxidizing agent, therefore the scope of our study was to test alternative fluorinating agents like Nitrogen trifluoride (NF₃) or perfluorodecyltrichlorosilane (FDTS) which are widely established in the microelectronics industry. We present the impact of NF₃ pre-treatments on transferred Graphene layers prior to the ALD of Al₂O₃ films. In addition, we investigated a pre-treatment of graphene with FDTS prior to the HfO₂ growth by AVD. We demonstrate that the FDTS self-assembled monolayer (SAM) significantly improves nucleation of HfO₂ on graphene. Wafer scale compatibility of the proposed pre-treatment can enable fast adaption for the fabrication of graphene-based devices on large-diameter wafers. Plasma enhanced CVD (PECVD) is of interest for applications requiring low thermal budgets such as the back end of line (BEOL) (< 450°C). However, high energy ion bombardment related to plasma exposure readily correlates with worsening of material properties⁴. Heintze et al. have demonstrated, that the ion energy in the plasma decreases with increasing frequency⁵. We demonstrate, that by the use of PECVD at a very high frequency of 140 MHz, thin α-Si:H layers can be grown softly without changing the properties of the underlying Graphene significantly. The herein presented deposition strategies for dielectrics and semiconductors on Graphene surfaces demonstrate a significant progress towards a complete fabrication scheme of Graphene-based heterojunction devices in microelectronic technologies.

References