Integrated graphene plasmonic waveguide modulators

Figures

Sanshui Xiao

Yunhong Ding, Xiaowei Guan, N.A. Mortensen

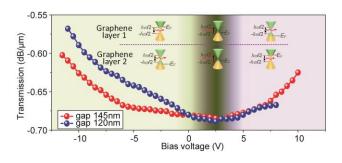
DTU Fotonik, Department of Photonics Engineering, Center for Nanostructured Graphene, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark

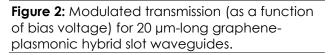
saxi@fotonik.dtu.dk, yudin@fotonik.dtu.dk

Graphene has offered a new paradigm for extremely fast and active optoelectronic devices due to its unique electronic and optical properties [1]. With the combination of high-index dielectric

waveguides/resonators, several integrated graphene-based optical modulators have already been demonstrated [2-4]. However, the optical modes in these systems are inherently strongly localized in the high-index materials, thus jeopardizing light-graphene interactions.

Surface plasmon polaritons have been shown the ability to manipulate light in the nanoscale [5], while at the same time giving possibility to direct more optical energy to the material interface where graphene could reside. We propose and demonstrate efficient graphene plasmonic waveguide electro-optical modulators, which are fully integrated with the silicon-on-insulator platform. We experimentally achieve the tunability of 0.13 dB/µm for the graphene plasmonic modulator, which exceeds the performance of previously reported graphene-plasmonic modulators and graphene-silicon waveguide modulators.


References


- [1] F. Bonaccorso et al., Nature Photon. 4 (2010) 611-622.
- [2] M. Liu et al, Nature, 474 (2011) 64-67.

- [3] C.T. Phare et al., Nature Photon. 9 (2015) 511-515.
- [4] Y. Ding et. al., Nano Lett., 15 (2015) 4393-4400.
- [5] S. I. Bozhevolnyi et al., Nature, 440 (2006) 508-511
- [6] Y. Ding et. al., arXiv:1610.05352

Le contraction de la contracti

Figure 1: 3D schematic of the grapheneplasmonic waveguide modulator

