Non-invasive Raman tomography for 2D-material applications

Stefan Wagner¹

Thomas Dieing², Alba Centeno³, Amaia Zurutuza³, Satender Kataria¹, Max C. Lemme¹

¹University of Siegen, Hölderlinstr. 3, 57076 Siegen, Germany

²WITec Wissenschaftliche Instrumente und Technologie GmbH, Lise-Meitner-Str. 6, 89081 Ulm, Germany

³Graphenea S.A., Avenida de Tolosa, 76, 20018 -San Sebastián, Spain

max.lemme@uni-siegen.de

Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane-based nanoelectromechanical systems (NEMS). Here, chemical vapor deposited graphene is transferred onto target substrates to suspend it over cavities for pressure sensor applications. The development of such requires devices suitable metrology methods, i.e. large-scale characterization techniques to confirm and analyze successful transfer with intact suspended graphene membranes. We propose fast and non-invasive Raman spectroscopy mapping to distinguish between freestanding and substrate-supported graphene, filtering bands of a typical graphene fingerprint and utilizing the different strain and doping levels (see Fig. 1). For further in depth analysis of the identified and intact membrane the technique is expanded to combine twodimensional area scans with cross-sectional Raman spectroscopy, resulting in threedimensional Raman tomography imaging of membrane-based graphene NEMS (see Fig. 2). Raman Tomography can be used to determine materials not only at the surface but also inside the device in 3D space [1]. The technique is not limited to graphene, but can be used to identify and analyze other 2D-materials, material stacks or covered layers, e.g., the graphene hot electron transistor (GBT) [2] or MEMS.

Furthermore, it could be used to determine the chemical content of nano bubbles [3] or micro chemical reactors [4] as well as microfluidic devices or other applications.

References

- [1] S. Wagner et al., Nano Lett., 2016, under Review.
- [2] S. Vaziri et al., Nano Lett., 2013.
- [3] T. Georgiou et al., Appl. Phys. Lett., 2011.
- [4] B. Ding et al., J. Mater. Chem. A, v, 2012, pp. 1096–1101.

Figures

Figure 1: a) Stitched white light image of the complete chip; b) stitched white light image of the test structures; c) Raman image of the test structures displaying 2D peak intensity (yellow: intact membrane; black: broken membrane).

Figure 2: a) cross-section schematic of one device; b) 2D-Raman scan of one cavity from the test structures (top view) indicated by a green square in Fig. 1c; c) Sequence images of a cavity for the taken at different z-positions; d) 3D tomography image of a cavity.