Disorder engineering and conductivity dome in ReS₂ with polymer electrolyte gating

Dmiry Ovchinnikov^{1,2}

Fernando Gargiulo³, Adrien Allain^{1,2}, Diego José Pasquier³, Dumitru Dumcenco^{1,2}, Ching-Hwa Ho⁴, Oleg V. Yazyev³, Andras Kis^{1,2}

¹Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

²Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

³Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

⁴Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan

dmitry.ovchinnikov@epfl.ch

Abstract

Atomically thin rhenium disulphide (ReS₂) is a member of the family of semiconducting two-dimensional materials. It has distorted 1T crystal structure, which leads to anisotropic transport and is characterized by weak interlayer coupling. Here, we report on the electrical transport study of mono- and multilayer ReS₂ in electrical double layer transistors (EDLT) configuration (Figure 1). We conductivity find that is completely suppressed at high carrier densities, an unusual feature, unique for monolayer ReS2 (Figure 2). For multilayered flakes the effect milder and insulator-metal-insulator is sequence was observed. We use dualgated devices to distinguish between the effects of doping and electrostatic disorder. Furthermore, we perform density functional theory (DFT) calculations and build a transport model, which qualitatively describes our findings [1].

References

 Ovchinnikov, D. et al. Disorder engineering and conductivity dome in ReS₂ with electrolyte gating. Nat. Commun. 7:12391 doi: 10.1038/ncomms12391 (2016)

Figure 1: Schematic of EDLT based on ReS₂.

