Advances in graphene growth and device processing have enabled a host of advanced device concepts. We will describe field effect transistors (FETs) and beyond-CMOS ideas such as tunnel FETs which show negative differential resistance (NDR) that are enabled by the unique properties of graphene [1-2]. We will discuss applications of such devices in memory and logic circuits. Challenges in large scale integration of such devices and commercialization will be discussed.

References:

Figure 1: Bi-layer graphene-hBN tunnel FET showing negative differential resistance (NDR).

Figure 2: Use of NDR in 1-transistor static random access memory circuit. Conventional CMOS SRAMs require 4 transistors.