Ultrashort Pulse Generation Using Mechanically Exfoliated MoS$_2$ in Erbium Doped Fiber Laser

E. J. Aiub
D. Steinberg, E. A. Thoroh de Souza and L. A. M. Saito.
MackGraphe - Graphene and Nanomaterials
Research Center, Mackenzie Presbyterian University, Rua da Consolação, 930, 01302-907, São Paulo, Brazil.
lucia.saito@mackenzie.br

Abstract

This is the first demonstration of a mode-locked Erbium Doped Fiber Laser (EDFL) using mechanically exfoliated MoS$_2$ onto D-shaped optical fiber and the shortest pulse duration ever reported in literature by using MoS$_2$ saturable absorber (SA) in EDFL. Since the graphene was isolated, other two-dimensional (2D) nanomaterials have been attractive in many possible applications [1]. The transition metal dichalcogenides such as MoS$_2$ have exhibited remarkable nonlinear optical properties [2], being used to generate ultrashort pulses in fiber lasers as SA in EDFL, but most of them fabricated by liquid phase exfoliation or chemical vapor deposition growth [3, 4]. In this work, we prepared a mechanically exfoliated MoS$_2$ sample and transferred onto 10 mm length of D-shaped optical fiber side-polished surface. For its transference, we used the Rosa et al. [5] method, consisting of PVA/PMMA polymeric substrate preparation over SiO$_2$ substrate. The characterization of the MoS$_2$ sample was performed by using optical microscope and Raman spectroscopy, shown in Figure 1. Its polarization performance was measured to be 16.06 dB (97.5%) of polarization relative extinction rate. When incorporated the SA in the laser cavity, it can be generated a spectral bandwidth of 20.5 nm, corresponding to 200 fs pulse duration (Figure 2) at cavity fundamental repetition rate of 14.53 MHz.

References

Figures

Figure 1: Raman spectroscopy of MoS$_2$ showing the $E_{2g} = 382 \text{ cm}^{-1}$ and $A_{1g} = 407 \text{ cm}^{-1}$ modes (inset – optical image of bulk MoS$_2$ flakes onto polished surface of D-shaped optical fiber).

Figure 2: Autocorrelation trace (inset – output linear spectrum) obtained with MoS$_2$ sample onto D-shaped optical fiber in an EDFL.

*This work is supported by Fapesp (2012/50259-8 and 2015/11779-4), CAPES, CNPq and Mackpesquisa.