High frequency photodetection and optoelectronic mixing in CVD graphene

P legagneux¹, A Montanaro¹, S Mzali¹, J-P Mazellier¹, O Bezencenet¹, C Larat¹, S Molin¹, L Morvan¹, D Dolfi¹, B Dlubak², P Seneor², M-B Martin², S Hofmann³, J Robertson³, A Centeno⁴, and A Zurutuza⁴

¹Thales Research and Technology, 1, Av. Augustin Fresnel, 91767 Palaiseau, France,
²Unité Mixte de Physique CNRS/Thales, 1, Av. Augustin Fresnel, 91767 Palaiseau, France,
³Department of Engineering, University of Cambridge, Cambridge CB21PZ, United Kingdom
⁴Graphenea S.A., Tolosa Hiribidea, 76 E-20018 Donostia, Spain

pierre.legagneux@thalesgroup.com

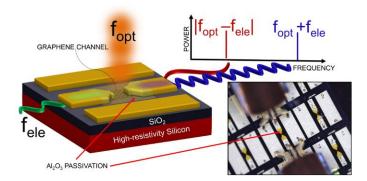
Abstract

Graphene exhibits very high carrier mobility, photocarrier short lifetime and broadband absorption. As graphene technology is CMOS compatible, graphene devices offer a viable low cost alternative for high frequency electronic and optoelectronic devices [1].

Thanks to low propagation losses, electromagnetic immunity and large bandwidth operation, optical signals are advantageously coupled with electrical signals for high-rate communication systems on optical fibers. This leaded to the large development of optoelectronic devices based on 3-5 semiconductors and operating at 1.55 µm telecom wavelength.

We have fabricated a high frequency optoelectronic device that operates with optical signals at 1.55 μ m and with microwave electrical signals (see figure and [2]). This is a coplanar waveguide integrating a CVD graphene layer that is passivated with an atomic-layer-deposited Al₂O₃ film. As a consequence the graphene Fermi level can be easily controlled with the silicon substrate bias even if the graphene layer and the substrate are separated by a 2 μ m thick SiO₂ layer.

We operated this device as a high frequency photodetector and demonstrated a flat response up to 40 GHz. Moreover, using up to 30 GHz optical signals at 1.55 μ m and up to 30 GHz microwave signals, we showed optoelectronic mixing. Thanks to this feature, a high-frequency intensity-modulated optical signal at frequency f_{opt} can be photodetected and mixed with an electrical carrier at frequency f_{ele}. It produces up and down-converted signals, at frequencies f_{opt} + f_{ele} and | f_{opt} - f_{ele} |, respectively. These results open interesting prospective in the domain of low cost telecommunication systems.


References

[1] A. C. Ferrari, et al., Nanoscale, 7, 4598 (2015).

[2] A. Montanaro et al., "30 GHz optoelectronic mixing in CVD graphene", Nano Lett., Article ASAP

DOI: 10.1021/acs.nanolett.5b05141

Figure

