Electrolytically Exfoliated Graphene/Flame-spray-made Vanadium-doped SnO$_2$ Composite Films for Nitric Oxide Sensing

Jirasak Sukunta1, Anurat Wisitsoraat2, Chakrit Sripachuabwong2, Ditsayut Phokharatkul2, Adisorn Tuantranont2, Sukon Phanichphant3, Chaikarn Liewhiran1,*

1Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202, Thailand
2Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand
3Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50202, Thailand

*Corresponding author: chaikarn_l@yahoo.com

Abstract: The effect of functionalized additives of flame-spray-made SnO$_2$ nanoparticles on nitric oxide (NO) gas-sensing properties were systematically studied by doping with 0.1–2 wt% vanadium (V) and additional loading with 0.1–10 wt% electrolytically exfoliated graphene. Characterizations by X-ray diffraction, transmission/scanning electron microscopy and X-ray photoelectron spectroscopy significantly demonstrated that V-doped SnO$_2$ nanostructures had spheriodal morphology with polycrystalline tetragonal SnO$_2$ phase and vanadium (V$^{4+}$, V$^{5+}$) was confirmed to form solid solution with SnO$_2$ lattice while graphene in the sensing film after annealing and testing still retained high-quality multilayer structure with low oxygen content. The sensing films were prepared by a spin-coating technique on Au/Al$_2$O$_3$ substrates and evaluated for NO-sensing performances (25–1000 ppm) at operating temperatures ranging from 25 to 350°C in dry air. Gas-sensing results indicated that 0.1 wt% V-doped SnO$_2$ evidently catalyzed the highest response at 300°C. While, the additional loading of 0.5 wt% graphene into optimal 0.1 wt% V-doped SnO$_2$ composites led to a drastic response enhancement with shorter response times and fast recovery stabilization at optimal operating temperature of 250°C. The superior gas sensing performances of V-doped SnO$_2$ nanoparticles loaded with graphene may be attributed to large specific surface area of the composite, high density of reactive sites of highly porous non-agglomerated graphene–SnO$_2$ nanoparticle structure and high electronic conductivity of graphene, which allowed fast gas response and recovery. Moreover, detailed mechanisms for the drastic NO response enhancement by V and graphene were proposed based on the formation of graphene/V-doped SnO$_2$ ohmic metal-semiconductor junctions and accessible interfaces of graphene–metal oxide nanoparticles. Therefore, the graphene-loaded and V-doped SnO$_2$ sensor is potential for responsive detection of NO and may be useful for general environmental and biomedical applications.

Reference

Figures

RESULTS: (a) BF-TEM image of the optimal 0.5 wt%G/SnO$_2$ composite, (b) HR-TEM images of multilayer graphene (G), change in resistance under exposure to NO (25-1,000 ppm) of (c) undoped SnO$_2$ and 0.1-2 wt%V-doped SnO$_2$ at the optimal working temperature of 300°C and (d) 0.1-10 wt%G/0.1 wt%V-SnO$_2$ sensors at the optimal working temperature of 250°C.