Graphene-based NO₂ gas sensor: Synthesis and Characterisation

Mona Mirmotallebi^{1,3}, Vardan Galstyan^{2,3}, Andrea Ponzoni^{2,3}, Iskandar Kholmanov^{2,4}, Azam Iraji zad^{1,5}, Giorgio Sberveglieri^{2,3}

¹Department of Physics, Sharif University of Technology, Azadi Street, PO Box 11155-9161, Tehran, Iran
 ²Sensor Lab, CNR, National Institute of Optics (INO), Via Valotti 9, 25133 Brescia, Italy
 ³Sensor Lab, Department of Information Engineering, University of Brescia, Via Valotti 9, 25133 Brescia, Italy
 ⁴Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712, USA
 ⁵Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Street, PO Box 11155-8639, Tehran, Italy

Iran

mirmotallebi@physics.sharif.edu

Graphene-based structures have been investigated comprehensively since the discovery of graphene in the last decade. Despite the advantages of chemically modified graphene-based gas sensors, such as low energy consumption and stability in the environment, they still suffer from poor recovery after gas exposure [1]. In this research, a graphene-based NO₂ gas sensor with complete recovery is fabricated. Chemically prepared graphene oxide via modified Hummer's method [2], exposed to hydrazine hydrate at 100 °C, drop casted on alumina substrate with platinum electrodes for conductivity measurement (Figure 1). This fabrication procedure results in p-type graphene sheets, with oxygen-containing functional groups shown in the EDX analysis of the samples (Table 1). The response of the sensor is measured as (R_a - R_g/R_a) ×100, as R_a stands for sample resistivity in dry air and R_g stands for sample resistivity in the presence of gas. The gas sensing results show a high response of 21% to 2 ppm NO₂ at 100°C (Figure 2). The increase in sample electrical current could be attributed to the reduction of graphene sheets in the presence of NO₂ species. Low response time (T_{res}) and recovery time (T_{rec}) and full recovery of the sample exposed to NO₂, is promising for future graphene-based gas sensors (Table 2).

References:

[1] S. Basu and P. Bhattacharyya, Sensors Actuators B Chem., **173** (2012) pp. 1–21,.
[2] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, *Nature*, **448**, (2007) pp. 457–460.

Figures and Tables:

Element	Weight%	Atomic%	
С	7.01	11.22	
0	46.25	55.52	
AI	46.74	33.27	
Totals	100.00	100.00	

Table 1. EDX analysis of graphene sheets on alumina substrates.

Table 2. Gas ser	nsing characteristics	of graphene sheets.
------------------	-----------------------	---------------------

NO ₂ gas concentration (ppm)	Response	T _{res} (sec)	T _{rec} (sec)
0.5	1.7445	1447.5	50
1	13.6375	752.5	385
2	21.32	640	517.5

Figure 1. FESEM image of graphene sheets on alumina substrate.

Figure 2. Graphene sheets response to different NO_2 gas concentrations at 100 °C.