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The dynamical mean-field theory (DMFT) is successful route for description of strongly correlated
systems, which can exhibit some of the most intriguing features known to condensed matter physics,
including high-temperature superconductivity, heavy fermion behavior, metal-insulator transitions and
others [1]. However, there are many examples when one should overcome the main limitation of the
DMFT that is neglect of the non-local magnetic and charge correlations. This is the case for graphene-
based systems for which strong inter-site Coulomb correlations[2] and magnetic couplings [3] were found.
To solve this problem one can use different extensions and modifications of the single-site DMFT approach
that are cluster DMFT [4], dual fermions approach [5] and others.

Here we propose a distinct numerical scheme based on the exact diagonalization approach to solve the
equations of the extended dynamical mean-field theory. In contrast to the single-site DMFT we deal with
the impurity problem where the correlated site interacts with fermion and boson baths. The latter gives us
opportunity to simulate the non-local magnetic fluctuations in the system describing by the Heisenberg-type
term JijSiSj . The corresponding impurity Hamiltonian is given by

Himp = εd
∑
σ c

†
dσcdσ + Und↑nd↓ +

∑
k Vdk(c†dσckσ + c†kσcdσ) +

∑
k,σ εkc

†
kσckσ

+
∑
p Ωpb

†
pbp +

∑
pWpŜ(b†

p + bp)

where εd and εk are energies of the correlated impurity and fermionic bath states, c†dσ (cdσ) and c†kσ(ckσ) are
the creation (annihilation) operators for impurity and bath electrons, Vdk is the hopping integral between
impurity and fermionic bath states, µ is the chemical potential and U is the on-site Coulomb interaction,
b†
p(bp) - creation(anihillation) operator of pth boson, Ωp - boson frequency, Wp - fermion-boson interaction.

Within the self-consistency cycle the hybridizations with each type of the reservoirs are recalculated.
The developed scheme gives us opportunity to provide a complete description of the magnetic properties

of a low-dimensional system, since the momentum- and frequency-dependent magnetic susceptibility of the
system, χ(q, ω) can be calculated. Fig.1 gives the EDMFT results obtained by using the developed scheme
for the Hubbard model with half-filling on the square lattice. One can see that the account of the non-
local magnetic interactions, J leads to the formation of the low-energy excitations in the local magnetic
susceptibility.
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[2] T. O. Wehling, E. Sasioǧlu, C. Friedrich, A. I. Lichtenstein, M. I. Katsnelson, and S. Blügel, Phys.
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Figure 1: Comparison of the local susceptibilities calculated by using DMFT and EDMFT solvers for
J = 0.01 eV with β = 10 and U = 2 eV, β is the inverse temperature.
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