An exact-diagonalization-based scheme for solving the extended DMFT equations

D. S. Medvedeva¹, V. V. Mazurenko¹, S. N. Iskakov^{1,2}, A.I. Lichtenstein^{1,3}

¹⁾Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira st. 19, Ekaterinburg, Russia

²⁾Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

³⁾Hamburg University, Germany, Hamburg, Jungiusstraße 9

medvedeva.ds@gmail.com

The dynamical mean-field theory (DMFT) is successful route for description of strongly correlated systems, which can exhibit some of the most intriguing features known to condensed matter physics, including high-temperature superconductivity, heavy fermion behavior, metal-insulator transitions and others [1]. However, there are many examples when one should overcome the main limitation of the DMFT that is neglect of the non-local magnetic and charge correlations. This is the case for graphene-based systems for which strong inter-site Coulomb correlations[2] and magnetic couplings [3] were found. To solve this problem one can use different extensions and modifications of the single-site DMFT approach that are cluster DMFT [4], dual fermions approach [5] and others.

Here we propose a distinct numerical scheme based on the exact diagonalization approach to solve the equations of the extended dynamical mean-field theory. In contrast to the single-site DMFT we deal with the impurity problem where the correlated site interacts with fermion and boson baths. The latter gives us opportunity to simulate the non-local magnetic fluctuations in the system describing by the Heisenberg-type term $J_{ij}\mathbf{S}_i\mathbf{S}_j$. The corresponding impurity Hamiltonian is given by

$$H_{imp} = \varepsilon_d \sum_{\sigma} c^{\dagger}_{d\sigma} c_{d\sigma} + U n_{d\uparrow} n_{d\downarrow} + \sum_k V_{dk} (c^{\dagger}_{d\sigma} c_{k\sigma} + c^{\dagger}_{k\sigma} c_{d\sigma}) + \sum_{k,\sigma} \varepsilon_k c^{\dagger}_{k\sigma} c_{k\sigma} + \sum_n \Omega_p \mathbf{b}^{\dagger}_p \mathbf{b}_p + \sum_n W_p \hat{\mathbf{S}} (\mathbf{b}^{\dagger}_p + \mathbf{b}_p)$$

where ϵ_d and ϵ_k are energies of the correlated impurity and fermionic bath states, $c_{d\sigma}^{\dagger}(c_{d\sigma})$ and $c_{k\sigma}^{\dagger}(c_{k\sigma})$ are the creation (annihilation) operators for impurity and bath electrons, V_{dk} is the hopping integral between impurity and fermionic bath states, μ is the chemical potential and U is the on-site Coulomb interaction, $\mathbf{b}_p^{\dagger}(\mathbf{b}_p)$ - creation(anihillation) operator of \mathbf{p}^{th} boson, Ω_p - boson frequency, W_p - fermion-boson interaction. Within the self-consistency cycle the hybridizations with each type of the reservoirs are recalculated.

The developed scheme gives us opportunity to provide a complete description of the magnetic properties of a low-dimensional system, since the momentum- and frequency-dependent magnetic susceptibility of the system, $\chi(\mathbf{q}, \omega)$ can be calculated. Fig.1 gives the EDMFT results obtained by using the developed scheme for the Hubbard model with half-filling on the square lattice. One can see that the account of the nonlocal magnetic interactions, J leads to the formation of the low-energy excitations in the local magnetic susceptibility.

References

- [1] A. Georges, G. Kotliar, W. Krauth and M.J. Rosenberg, Review Modern Physics, 68, 13 (1996).
- [2] T. O. Wehling, E. Sasioğlu, C. Friedrich, A. I. Lichtenstein, M. I. Katsnelson, and S. Blügel, Phys. Rev. Lett. 106, 236805 (2011).
- [3] A. N. Rudenko, F. J. Keil, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 88, 081405 (2013).
- [4] H. Park, K. Haule and G. Kotliar, Phys. Rev. Let. 101, 186403 (2008).
- [5] S. Brener, H. Hafermann, A.N. Rubtsov, M.I. Katsnelson and A.I. Lichtenstein, Physical Review B, 77, 195105 (2008).

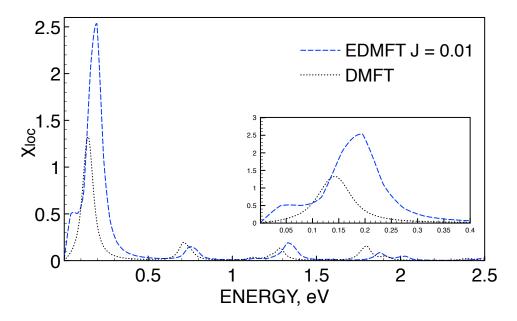


Figure 1: Comparison of the local susceptibilities calculated by using DMFT and EDMFT solvers for J = 0.01 eV with $\beta = 10$ and U = 2 eV, β is the inverse temperature.