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Abstract  
 Graphene superlattices (GSLs) are made of a sheet of graphene deposited on a heterostructure 
formed by periodically alternating nanometric layers of SiO2 and SiC; the layers are arranged such that 
the hexagonal lattice of SiC{0001} was exactly under that of the graphene (Figure 1) [1]. A strong 
electromagnetic field (EM) incident in the GSL induce the propagation of electromagnetic waves 
governed by the nonlinear Klein-Gordon equation u!!  −  u!!  + V(u) =  0, where u is the dimensionless 
transversal potential of the EM field, t is time, x is the spatial direction of the superlattice axis, and V 𝑢  is 
a nonlinear potential given by  𝑉 𝛼 = !!!!! !"#!

!!!! !!!"#!
, where 𝜔! is the plasma frequency and b is a 

geometric parameter [2]; here on, this wave equation is referred as GSLeq.  
The GSLeq has a solitary wave solution of the form 𝑢 𝑥, 𝑡 =  𝛼(𝜉), where 𝜉 = 𝑥 − 𝑐𝑡, whose 

expression in integral form is omitted here for brevity. This expression corresponds to a one-dimensional 
topological solitary wave transiting between to consecutive multiples of 2 𝜋; it is referred to as a kink 
(antikink) when it is monotonically increasing (decreasing). For small enough b, the GSLeq reduces to the 
well-known sine-Gordon equation (sGeq). Hence, let us apply to the GSLeq the Strauss-Vazquez finite 
difference scheme [3], widely used for the sGeq; this scheme is given by 
!!!!!!!!!!!!!!!!

∆!!
− !!!!

!!!!!!!!!!!
!

∆!!
 = ! !!!!! !! !!!!!

!!!!!!!!!!! , where 𝑢!!  is an approximation to 𝑢 𝑚Δ𝑥, 𝑛Δ𝑡 , 
Δ𝑥 is the grid size, Δ𝑡 is the time step, and 𝐺! 𝑢 = 𝑉(𝑢). This numerical method is second-order accurate 
in both space and time, and nonlinearly stable since it exactly conserves a discrete energy [4]. 

Figures 2 and 3 show the amplitude of the solution for the interaction between an antikink and a 
kink with b = 0.2 and  b =  0.7, respectively. In both figures the kink (antikink) propagates with negative 
(positive) speed form the left (right), colliding nearly elastically and recovering its shape, but with opposite 
amplitude sign, and speed after their interaction. Note that the kink (antikink) is faster for b =  0.7 than for 
b = 0.2. The ripples shown in the figures during the kink (antikink) propagation are no numerical artifacts, 
since the reduction of the time step Δ𝑡 and the grid size Δ𝑥 do not alter the results shown in Figures 1 and 
2 up to the graphical resolution. In order to assess the accuracy of the numerical method the conservation 
of the discrete energy has been checked (the error is smaller than 12x10!!"). Moreover, the numerical 

scheme is stable under the CFL condition !!
!!

!
≤  1. Further studies of the interactions between kinks 

and antikinks are required to clarify the origin of the ripples in Figures 2 and 3. Our numerical results 
suggest are useful for possible applications of graphene superlattices for the development of new 
transistors and terahertz lasers. 
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   Figure 1. Graphene superlattice.            Figure 2. Kink-antikink interaction for b=0.2.       Figure 3. Kink-antikink interaction for b=0.7. 


