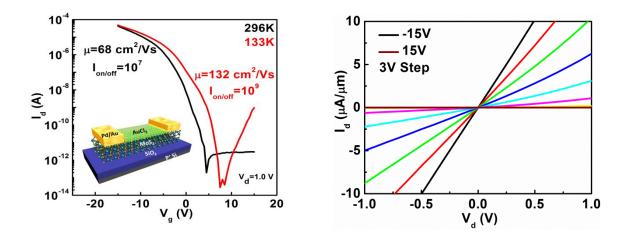
High performance p-type MoS₂ transistor enabled by chemical doping

Xiaochi Liu, Deshun Qu, Jungjin Ryu, Faisal Ahmed, Zheng Yang, Daeyeong Lee, and Won Jong Yoo^{*}

Samsung-SKKU Graphene/2D Center (SSGC), Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), School of Mechanical Engineering Sungkyunkwan University, 2066, Seobu-ro, Jangangu, Suwon, Gyeonggi-do, 440-746, Korea.


E-mail: yoowj@skku.edu

Abstract

The accessibility of p-type MoS_2 FET (PFET) has been a stumbling block for complementary device applications involving MoS_2 .^[1] The strong pinning effect at metal-MoS₂ interface has been considered to be the leading cause of unipolar n-type MoS_2 FET (NFET).^[2] In this study, both non-degenerate MoS_2 PFET with high on/off ratio (10⁹ at 133K) and gate independent degenerate MoS_2 PFET with high hole current density were enabled by controllable chemical doping.^[3] Hole mobility of the doped non-degenerate MoS_2 PFET was measured to be 72 cm²/Vs at room temperature, and this value is further increased to 132 cm²/Vs at 133K. Channel resistance R_s was proved to limit I_{on} of PFET after careful analysis of carrier transport mechanism in those doped MoS_2 PFETs. Therefore, p-type doping of channel was also necessary for achieving high performance MoS_2 PFET in addition to contact engineering. Based on the high performance PFET, we successfully demonstrated a MoS_2 CMOS inverter by integrating NFET and PFET.

References

[1] J. Suh, T. E. Park, D. Y. Lin, D. Fu, J. Park, H. J. Jung, Y. Chen, C. Ko, C. Jang, Y. Sun, R. Sinclair, J. Chang, S. Tongay, J. Wu, *Nano Lett.* **2014**, *14*, 6976.
[2] W. S. Leong, X. Luo, Y. Li, K. H. Khoo, J. T. L. Thong, *ACS Nano* **2015**, *9*, 869.
[3] H. –M. Li, D. Lee, D. Qu, X. Liu, J. Ryu, A. Seabaugh, W. J. Yoo, *Nat. Commun.* **2015**, *6*, 6564.

