Facile Synthesis of SnS-SnS$_2$ Heterostructure p-n Diode

Jung Ho Kim1,2, Seok Joon Yun1,2, Jiong Zhao1,2 and Young Hee Lee1,2*

1Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 446-746, Korea

2Department of Energy Science, Sungkyunkwan University, Suwon 446-746, Korea
leeyoung@skku.edu

Abstract

After the discovery of graphene and its extraordinary physical properties, other two-dimensional layered materials are also highlighted to become promising candidates for future nanotechnology. Sn-sulfides are one of the interesting layered materials which have different crystal phases such as hexagonal SnS$_2$ and orthorhombic SnS. These two materials show different properties such as SnS$_2$ showing n-type whereas SnS showing p-type. Recently individual growth and artificial stacking of these two materials have been demonstrated [1].

In this work, by simply removing sulfur atoms from the top part of as-exfoliated SnS$_2$ single crystal, we could achieve a facile method to synthesize SnS(p-type) and SnS$_2$(n-type) vertical heterostructure. To confirm our method, we conducted Raman, TEM, and XPS measurements and showed that the crystal is indeed a heterostructure. Furthermore, we fabricated Graphene-SnS$_2$:SnS-Graphene vertical p-n diode to confirm rectifying behavior and photoresponse of the device.

References

Figures