Modified Langmuir-Schaefer method for large-scale deposition of graphene oxide layers in polymer solar cell research

M. Bodik, P. Siffalovic, V. Nadazdy, A. Vojtko, M. Kaiser, K. Vegso, M. Hodas, M. Jergel, E. Majkova, Z. Spitalsky*, M. Omastova*

Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava, Slovakia *Polymer Institute SAS, Dubravska cesta 9, 845 41 Bratislava, Slovakia peter.siffalovic@savba.sk (poster)

Abstract

The graphene oxide (GO) stays in forefront of promising materials as an interfacial layer in polymer solar cells[1]. The conventional hole transport layer (HTL) based on PEDOT:PSS thin films is prone to fast degradation. Recently, spin-coated GO thin films have been proposed to replace the PEDOT:PSS material as HTL [2-4]. It was demonstrated that further oxidation of GO thin film by means of UV/ozone treatment increases the device efficiency by 15% compared to the conventional PEDOT:PSS HTL[5]. Moreover, the interface laver based on GO will reduce interdiffusion between the active laver and the conductive ITO (tin-doped indium oxide) layer. Here we demonstrate application of a modified Langmuir-Schaefer method to facilitate a controlled large-area homogenous deposition of GO thin films onto arbitrary substrates. The GO was synthesized by a modified Hummers method and further purified by centrifugation in order to select only single layer GO flakes. The final GO material was redispersed in methanol/water solution and applied onto the water surface. The GO Langmuir film prepared at the surface pressure of 15 mN/m was transferred onto ITO coated glass by a controlled removal of the water subphase. The Fig. 1a shows scanning electron microscopy image of GO deposited layer. The Fig. 1b shows its atomic force microscopy image along with a line cross-section. The first set of asdeposited GO films was further reduced at different temperatures up to 400°C in a high vacuum chamber. The second set of the as-deposited GO films was oxidized by UV/ozone treatment. The reduction/oxidation effect on the GO electron structure was monitored by electrochemical impedance spectroscopy and Kelvin probe method. As the next step, the reduced/oxidized samples were embedded into a standard polymer solar cell with the structure Glass/ITO/(r)GO/P3HT:PCBM/Ca/Ag in order to inspect the impact of GO oxidization/reduction on particular parameters of I-V curves such as fill factor, open-circuit voltage, short-circuit current and solar cell efficiency in the end.

References

[1] X. Wan, G. Long, L. Huang, Y. Chen, Adv. Mater., 23 (2011) 5342-5358.

[2] Y.-J. Jeon, et al., Solar Energy Materials and Solar Cells, 105 (2012) 96-102.

- [3] X. Liu, H. Kim, L.J. Guo, Organic Electronics, 14 (2013) 591-598.
- [4] J.-M. Yun, et al., Adv. Mater., **23** (2011) 4923-4928.
- [5] X.-C. Jiang, et al., Applied Physics Letters, 103 (2013) 073305.

Figures

Fig. 1 - GO film deposited by modified Langmuir-Schaefer technique. (a) SEM image and (b) AFM image with corresponding line scan.