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INTRODUCTION

Graphene has many revolutionary properties for
fundamental and applied physics. In this conference,
we show how graphene (with almost all electrons
traveling at the same velocity) provides an unprece-
dented opportunity to deduce information on the
(wave packet) nature of (quasi-free) electrons.

THE SIZE OF ELECTRONS

The maximum number of electrons, whose po-
sitions x, z and wave vectors kx, kz fit inside a
(2D) phase-space region S, is N = S/(2π)2

with S = ∆x∆Kx∆z∆Kz . We neglect spin and
valley degeneracies. This last result implies that
each electron requires a phase space region for
itself equal to ∆x∆Kx = 2π. Born-von Karman
boundary condition suggests that each electron is an
eigenstate with ∆x = Lx and wave vector ∆Kx =
2π/Lx. However, a (time dependent) wave packet
needs several momentum eigenstates. Many-particle
exchange interactions on (quasi-free) electrons [1]
shows that a larger ∆K ′x and shorter ∆x′ (or
vicerversa) are also compatible with the phase-space
density ∆x′∆Kx‘ = 2π. See Figs. 1 and 2. Then,
which is the size ∆x of (wave packets) electrons
in graphene ? In this conference we show how
to answer this question from, the experimentally
accesible, high-frequency current fluctuations.

PHASE-SPACE DENSITY OF INJECTED ELECTRONS

By measuring the electrical current, we can ac-
cess directly to the phase-space density of injected
electrons. In the 2D material, all electrons in the
phase-space region S move to another x-region
during the time interval T = ∆x/vx [1], [2]. See
Fig. 2. Therefore, the time between two consecutive
injections of electrons is:

to = T/N = 2π/(∆Kx vx) (1)

being vx = vgkx/
√
k2x + k2z the x-velocity for

graphene electrons with vg = 3 × 106 m/s and
vx = h̄kx/m for parabolic (Silicon) band-structure
materials with m = 0.9 mo. Linear and parabolic
phase space density of injected electrons, defined
as N/T = (to)

−1 ∝ vx, are plotted in Fig. 3. Al-
most all graphene electrons move at the maximum
velocity vg, while a much larger velocity dispersion
appears in Silicon [2]. See also Fig. 4.

TIME CORRELATION BETWEEN ELECTRONS

As we have shown, for all intervals ∆Kx between
0 and the maximum wave vector, (almost) all elec-
trons move at the same velocity and they enter into
the active region at multiples of to. Therefore, there
is a large temporal correlation between the total
(particle plus displacement) current generated by
two consecutive electrons (this is not true for Silicon
where a large variations of the velocity implies a
large variation of to). In Fig. 5, the power spectral
density of the current fluctuations S(f) with the
quantum BITLLES simulator [3] shows a bump at
fo=1.5 THz, which corresponds to our selection of
∆x ≈ 2um [2]. The smaller ∆x, the higher fo.

CONCLUSION

We have shown through numerical computations
that the measurement of current noise S(f) at THz
frequencies [4] (for ideally ballistic graphene two-
terminal structures) allows us to determine to, which
can be related to the fundamental size, ∆x, of
the wave packet associated to (quasi-free) electrons
through (1). Additionally, the present study implies
that the (classical or quantum) electron injection
models [5], [6] for linear dispersions are radically
different from parabolic ones, which has important
implications in the intrinsic behavior of AC and
noise graphene performances (Figs. 4 and 5).



Fig. 1. (a) The presence of N=9 electrons in a region of
the 1D phase-space implies that the probability P (Φ) of N=10
electrons inside the same region is almost zero. (b) Contour plot
of the right figure where each electron is separated a normalized
distance d from the rest [1]. Each electrons requires a phase
space region equal to 2π.

Fig. 4. Number of electrons as a function of instantaneous
current I they take during a simulation time of 1 ps at 100 K,
with Fermi energy Ef = 0.1 eV for (a) Silicon (b) Graphene.
Almost all graphene electrons move at the same velocity and
carry the same instantaneous current. This effect has important
implications in the intrinsic behavior of AC and noise graphene
performances [2], [4].
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Fig. 2. Schematic representation of the (graphene) reservoir
and (graphene) active region of length Lx where the injection
of electrons (with constant rate) takes place.

Fig. 3. Number of injected electrons computed from Eq. (1)
as N/T = (to)−1 ∝ vx for each point of the 2D wave vector
space {kx, kz} during a simulation time of 1 ps at 100 K,
with Fermi energy Ef = 0.1 eV . (a) Silicon where highest
injection rate appears at highest energies, and vx does only
depend on {kx}. (b) Garphene where the highest injection
appears in almost all points {kx, kz}, except those with high
kz [2]. The velocity vx does explicitly depend on {kx, kz}.
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Fig. 5. Preliminary results with the quantum BITLLES simula-
tor [3] for the power spectral density of the current fluctuations
S(f) as a function of frequency f for the ideally ballistic
graphene two-terminal resistors of Fig. 1 with Lx=100 nm and
Lz=1 um with a Fermi level Ef = 0.05eV . The graphene
resistors (red) involves a higher cut-off frequency of S(f) than
Silicon one (black) because of a shorter current (particle and
displacement) pulses. The presence of the graphene (red) bump
at fo ≈ 1.5 THz (and other harmonics) is related to the time
to = 1/fo in Eq. (1).


