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Abstract  
 
The incorporation of foreign atoms into the carbon honeycomb lattice has been widely investigated in 
order to modify the electronic and chemical properties of carbon-based materials [1,2]. In contrast with 
conventional materials, the effect of foreign atoms in a 2D material, such as graphene, is expected to 
depend significantly on the position and surrounding of each atom due to the quantum confinement of 
the electrons [2]. Recent scanning tunneling microscopy and spectroscopy studies of nitrogen doped 
graphene have revealed how the incorporation of this foreign atom into the sp

2
 lattice occurs. Joucken 

and coworkers showed that the exposure of graphene to a nitrogen plasma flux after synthesis leads to 
a homogeneous distribution of substitutional atoms [3]. However, when a nitrogen source is introduced 
during the CVD growth of graphene, the nitrogen incorporation exhibits a preferential accommodation 
within one of the two triangular sublattice that compose the honeycomb lattice [4,5,6]. This wayward 
incorporation of nitrogen atoms into graphene is not hitherto understood [5]. Nevertheless, the 
consequences of this peculiar atom arrangement on the electronic and transport properties of graphene 
are addressed in this work.  
 

Electronic structure and transport properties of nitrogen-doped graphene with a single sublattice 
preference are investigated using both first-principles techniques and a real-space Kubo-Greenwood 
approach [7]. Such a break of the sublattice symmetry leads to the appearance of a true band gap in 
graphene electronic spectrum. A band gap opening due to an ordered superlattice of dopants has 
already been discussed [8,9]. However, such a periodic doping configuration is rather difficult to 
envisage experimentally. In this work, we demonstrate the robustness of the band gap opening for the 
case of a random distribution of dopants in the same sublattice. In addition, a natural spatial separation 
of both types of charge carriers at the band edge is observed, leading to a highly asymmetric electronic 
transport. For such N-doped graphene systems, the carriers at the conduction band edge present 
outstanding transport properties with long mean free paths, high conductivities and mobilities. This 
phenomenon is explained by a non-diffusive regime, and originates from a low scattering rate. The fact 
that corresponding electrons reside mainly in the unaltered sublattice explains such low scattering rate. 
 

The presence of a true band gap along with the persistence of carriers traveling in an unperturbed 
sublattice suggest the use of such doped graphene in GFET applications, where a high ION/IOFF ratio is 
needed. The present simulations should encourage more investigation and specific measurements on 
N-doped graphene samples where such an unbalanced sublattice doping has been observed. 
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Figures 

Figure 1. STM images of nitrogen doped graphene obtained by incorporation of N during growth: (a) 
single substitution [4], and (b) double substitution [6]. (c) Calculated semiclassical conductivities  in 
graphene for various concentrations of N dopants randomly distributed in one sublattice [7]. 


