Quantum Hall Effect in Chemically Functionalized Graphene: Defect-Induced Critical States and Breakdown of Electron-Hole Symmetry

Nicolas Leconte, Frank Ortmann, Alessandro Cresti, Jean-Christophe Charlier, and Stephan Roche

Université catholique de Louvain (UCL), Institute of Condensed Matter and Nanoscience (IMCN), NAPS, Chemin des étoiles 8, 1348 Louvain la Neuve, Belgium nicolas.leconte@uclouvain.be

Unconventional magneto-transport fingerprints in the quantum Hall regime (with applied magnetic field from one to several tens of Tesla) in chemically functionalized graphene are reported [1]. The scattering potential induced by the impurities is modeled by tight-binding parameters extracted from *ab initio* calculations [2], which, in turn, are used inside an efficient real space order *N* method [3] to calculate the dissipative conductivity [4] under high field. Upon chemical adsorption of monoatomic oxygen (from 0.5% to few percents), the electron-hole symmetry of Landau levels is broken, while a double-peaked conductivity develops at low-energy, resulting from the formation of critical states conveyed by the random network of defects-induced impurity states. Scaling analysis suggests an additional zero-energy quantized Hall conductance plateau, which is here not connected to degeneracy lifting of Landau levels by sublattice symmetry breakage. This singularly contrasts with usual interpretation, and unveils a new playground for tailoring the fundamental characteristics of the quantum Hall effect.

References

[1] N. Leconte, F. Ortmann, A. Cresti, J.-C. Charlier, and S. Roche, submitted (2014)

[2] N. Leconte; A. Lherbier, F. Varchon, P. Ordejon, S. Roche, and J.-C. Charlier, Phys. Rev. B **84** (2011) 235420; N. Leconte, J. Moser, P. Ordejon, H.H. Tao, A. Lherbier, A. Bachtold, F. Alsina, C.M.S. Torres, J.-C. Charlier, and S. Roche, ACS Nano **4** (2010) 4033

[3] H. Ishii, F. Triozon, N. Koboyashi, K. Hirose, and S. Roche, C.-R. Physique **10** (2009) 283
[4] D. Soriano, N. Leconte, P. Ordejon, J.-C. Charlier, J.J. Palacios, and S. Roche Phys. Rev. Lett. **107** (2011) 016602; N. Leconte, D. Soriano, S. Roche, P. Ordejon, J.-C. Charlier, and J.J. Palacios, ACS Nano **5** (2011) 3987

Figures

