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We study the transitions from classical, semi-
classical, and quantum plasmonic behavior in
graphene nanodisks in the quasistatic limit. Specifi-
cally, we investigate fourhierarchiesof approximation:
1. Local-reponse approximation (LRA), embodying
the traditional approach in plasmonic light-matter in-
teraction. 2. Hydrodynamic response, adapted to the
response of graphene, including the first nonlocal cor-
rection to its optical response. 3. Real-space random
phase approximation (RPA) formulation with electron
states calculated from the Dirac-Weyl equation, with
infinite mass and zigzag boundary conditions (BCs).
4. Real-space RPAwith electron states calculated from
a nearest-neighbor tight-binding (TB) treatment. See
Figure 1 for a summary of the considered hierarchies.

Levels 1 and 2 constitute bulk response approxima-
tions, while levels 3 and 4 take the finite extent of the
graphene structure into consideration with different
precision: in the Dirac-Weyl treatment, the Hamilto-
nian is that of bulk graphene in the low-energy regime
with boundary conditions accounting approximately
for the topology and extent of the structure, whilst
the TB treatment accounts naturally for the atomistic
features of the structure. Additionally, levels 3 and
4 also naturally include the effects of energy level
quantization and nonlocality.
Graphene nanodisks are considered, which allows

semi-analytical treatments for approaches 1 through
3. Additionally, nanodisks, with their nontrivial edge-
configurations, highlight the importance of edge
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FIG. 1: Schematic illustration of the considered levels
of approximation in our treatment.

states in TB treatments. The treatment of edge-states
is completely absent in the bulk descriptions, i.e. in
the LRA and hydrodynamics, but can be qualitatively
accounted for in the Dirac-Weyl approach with zigzag
BCs.

Below we explicate the essence of the four ap-
proaches:
1. Local-response approximation: Taking the local-
response limit of the low-energy dispersion ε = ±~vFk
response result, the conductivity of graphene is given
by:1

σbulk(ω) = σD(ω) + σI(ω), (1)
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with Fermi level εF and loss rate γ.
2. Hydrodynamic reponse in graphene: A Taylor
approximation of the low-energy response result
to first non-vanishing component in momentum, k ,
yields (neglecting loss):
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where the plasma velocities βD =
√

3/4vF and βI =√
1/2vF differ. Neglecting this difference and letting

βI → βD, which induces only a small error since
the Drude contribution is usually dominant, allows
recasting the response as a single hydrodynamic
equation for the current J and electric field E:

J(r,ω) +
β2

D
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[
∇‖ · J(r,ω)

]
= σD(ω)E(r,ω). (3)

In both hydrodynamic and local descriptions we
solve the electrostatic problem due to an incident
wave using a semi-analytical polynomial expansion
technique.2

3. Dirac-Weyl and RPA: The Dirac-Weyl equation
for uncoupled Dirac valleys can be cast as a two-
spinor equation Ĥψ = εψ with the Hamiltonian
Ĥκ = vFσ · p̂ for theK-valley (and Ĥ = vFσ

∗ · p̂ for the
K′ valley), and spinor components associated with
the A- and B-sublattice.3 BCs corresponding to zigzag,
armchair, and mass confinement can be imposed.
Here we focus on the comparison of zigzag4 and
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mass confinement.5 Application of BCs discretizes
the allowed states {ε,ψ}ln with angular and radial
quantum numbers l and n. Additionally, an infinitely
degenerate band of zero-energy edge-states exist for
the zigzag BC.

The non-interacting polarizability, χ0, is computed
in a real-space formulation according to:6

χ0(r, r′;ω) = 2
∑
κll′nn′

fκl′n′ − fκln
~ω + i~η − (εκln − εκl′n′ )

(4)
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with the summation extending also over the valley
index κ, with Fermi-Dirac functions fκln , and with
electron relaxation-rate η = γ/2.
4. Tight-binding and RPA: The TB Hamiltonian,
including only nearest-neighbor interaction with
energy γ, reads as Ĥ = γ

∑
〈j,j′〉â

†
j b̂j′ + b̂†j′ âj , with

A- and B-sublattice annihilation (creation) operators
â(†)

j and b̂ (†)
j for 2p orbitals at site j and position

rj . Diagonalization of this Hamiltonian yields the
electron states. The polarizability is evaluable at the
lattice sites, i.e. it takes a discrete representation in
real-space χ0(rj , rj′ ;ω). It is determined following the
scheme in Eq. (4), but with the summation running
over the TB states.6

The interaction with external potentials φext, for
both the Dirac-Weyl and TB approaches, is introduced
by self-consistently coupling the total potential φ and
the induced charge ρ through the equations ρ(r) =∫
χ0(r, r′)φ(r′) dr′ andφ(r) = φext(r)+

∫
V (r, r′)ρ(r′) dr′,

with V (r, r′) denoting the Coulomb interaction,
thereby applying the RPA.

In our comparison of the above four approaches
for graphene nanodisks we examine and focus on the
following aspects: (a) The emergence of nonclassical
features in the optical response of nanodisks at small

radii, being distinct but qualitatively similar in the
Dirac-Weyl and TB approaches. These features are
due in part to near-zero energy edge states and in
part due to energy level quantization. (b) Assessing
the role of nonlocality in the optical response. We
find excellent agreement between the Dirac-Weyl
and hydrodynamic approaches at larger radii, both
exhibiting quantitatively identical blueshifts com-
pared with the LRA result. These predictions of
blueshifts, however, stand in contrast with the pre-
dictions of TB which predict minor redshifts6 of the
dipole resonance. (c) The sensitivity of TB calculations
to atomistic configuration variations, for fixed radii,
and sensitivity to polarization-angle. We consider
the ensemble-averaging of TB optical spectra and
compare with the continuum approaches.

We hope that our comparisons of the different
hierarchies of approximation will offer new insight
into the nature of quantum plasmonic effects in
graphene nanostructures. Additionally, we aim to
showcase the applicability of the continuum Dirac-
Weyl approach, and the feasibility of including the
effects of nonlocality and energy quantization in a
single continuum scheme. In geometries with well-
defined edges, such as zigzag or armchair, we predict
that theDirac-Weyl approachwill generally agree very
well with TB calculations, but at a reduced numerical
cost and with a more transparent interpretation.
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