Electron-beam-induced direct etching of Graphene

Cornelius Thiele1,2, Alexandre Felten1,3, Cinzia Casiraghi3,4, Hilbert v. Löhneysen2,5,6, Ralph Krupke1,2,7

1Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
2DFG Center for Functional Nanostructures (CFN), 76028 Karlsruhe, Germany
3Physics Department, Free University, 14195 Berlin, Germany
4School of Chemistry and Photon Science Institute, University of Manchester, United Kingdom
5Physikalisches Institut, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
6Institut für Festkörperphysik, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
7Institut für Materialwissenschaft, Technische Universität Darmstadt, 64287 Darmstadt, Germany

Cornelius.Thiele@kit.edu

Direct (maskless) lithography on graphene has so far been demonstrated using the high-energy electrons of a transmission electron microscope [1], helium ions of a scanning helium microscope [2] and recently also neon ions [3]. Scanning probe methods using an AFM or STM etch electrochemically [4], while the former methods rely on physical sputtering.

Here we demonstrate direct lithography on single- and bilayer graphene sheets using a scanning electron microscope with a gas injection system. The injection of oxygen gas into the chamber during scanning leads to the formation of reactive species at the focal point of the primary beam. These species then locally etch graphene. The technique has been termed electron-beam-induced etching/oxidation (EBIO/EBIE) and has been shown to work on other carbon-based materials [5-7].

Voltage-contrast imaging techniques are used in conjunction with finite-element simulations of the electrostatics to the explain the observed secondary electron intensities and correlate them to the etch profile.

References