Controlling the Chirality of Graphene's edges using Polarization Selective Laser Annealing

Milan Begliarbekov¹, **Onejae Sul²**, , Ken-Ichi Sasaki³, Eui-Hyeok Yang¹, Stephan Strauf¹

¹Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ, U. S. A. ²Korea Advanced Institute of Science and Technology, Daehakno 291, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea ³NTT Basic Research Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Japan

ojsul@kaist.ac.kr

The electronic and optical properties of graphene strongly depend on the chirality of its edges¹. While zigzag edges are metallic, armchair-terminated edges are semiconducting and are thus desired for numerous photonic and electronic applications. However, conventional fabrication procedures favor the formation of the zigzag edge. Here we show that impure armchair edges may be purified post-fabrication by using polarization-selective laser annealing². This technique was used to purify the edges of 30 nm wide graphene nanoribbon transistors. Transport measurements of optically annealed graphene nanoribbons (GNRs) reveal a 50% increase of the GNR energy gap after annealing, consistent with an increased percentage of armchair segments. Furthermore, µ-Raman spectroscopy reveals a greater armchair edge purity post annealing. These results suggest that edge chirality of graphene devices can be optically purified post fabrication, thereby enabling the realization of chiral graphene nanoribbons and heterostructures.

References:

1. M. Begliarbekov, O. Sul, S. Kalliakos, E. H. Yang, S. Strauf, "Determination of Edge Purity in Bilayer Graphene Using micro-Raman Spectroscopy", Appl. Phys. Lett. 97, 031908 (2010).

2. M. Begliarbekov, K. Sasaki, O. Sul, EH Yang, and S. Strauf, "Optical control of edge chirality in graphene", Nano Letters 11, 4874 (2011).