Nature of Interaction of Graphene with Ag, Au, Pd Metals

Michal Otyepka, Jaroslav Granatier, Petr Lazar, Pavel Hobza

RCPTM, Dept. of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. Listopadu 12, Olomouc, Czech Republic Michal.Otyepka@upol.cz

We studied the adsorption of Ag, Au, and Pd atoms on benzene, coronene and graphene using post Hartee-Fock wave-function theory (CCSD(T), MP2) and density functional theory (M06-2X, DFT-D3, PBE, vdW-DF) methods. The binding energies calculated by CCSD(T) method for benzene...M (M=Pd, Au, Ag) complexes are 19.7, 4.2, and 2.3 kcal/mol, respectively. The nature of binding of the three metals is different. Silver binds predominantly through dispersion interactions, the binding of palladium has a covalent character, and the binding of gold involves a subtle combination of charge transfer and dispersion interactions, as well as relativistic effects. These effects can be reproduced in plane-wave density functional theory calculations by including a fraction of the exact exchange and a nonempirical (vdW-DF) van der Waals correction (EE+vdW). The calculated EE+vdW energies agree well with the benchmark CCSD(T) energies for benzene...M complexes. The EE+vdW binding energies for the graphene...M (M=Pd, Au, Ag) complexes are 17.4, 5.6 and 4.3 kcal/mol, respectively. The interaction of larger metal clusters will also be discussed.

References

[1] Granatier J, Lazar P, Otyepka M, Hobza P J. Chem. Theory Comput., 7 (2011) 3743.