Graphene supports the propagation of subwavelength optical solitons

J. Bravo-Abad¹, M.L. Nesterov¹, A.Y. Nikitin², L. Martin-Moreno², and F.J. García-Vidal¹

¹ Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Spain
² Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, Zaragoza, Spain

jorge.bravo@uam.es

Nonlinear optical materials have fascinated physicists for decades, due to the fundamental interest of the unique phenomena that they display (such as frequency mixing, supercontinuum generation, and optical solitons) [1,2], as well as their important applications, such as higher-harmonic generation and optical signal processing [3,4]. Recently, a very high nonlinear response has been theoretically predicted [5, 6] and experimentally verified [7] in monolayer graphene. In this talk we will show how the large intrinsic nonlinearity of graphene at optical frequencies enables the formation of spatial solitons featuring subwavelength widths at moderate electric-field peak intensities [8]. We will illustrate this capability by numerically analyzing two arrangements leading to solitons with different polarizations: a graphene monolayer embedded into a conventional dielectric waveguide and a graphene sheet placed on top of a metal-dielectric structure. The relation between soliton width and input power will be discussed, showing that the subwavelength scale can be reached by using values for the beam peak intensity below the laser-induced damage threshold of graphene. Finally, we will also present a quasi-analytical model that is able to capture the basic ingredients of the numerical results.

Figure: An optical beam propagates inside a dielectric waveguide including a graphene monolayer located in the center, for low (a) and high (b) input powers. Panels (a) and (b) show slices of the beam intensity evaluated at the graphene layer, the yellow lines represent magnetic vector field whereas white lines depict the electric vector field.

References