Large area Micro- and Nanostructuring of Graphene on various Substrates using Nanoimprint Lithography

Iris Bergmair1, Wolfgang Hackl1, Maria Losurdo2, Maria Giangregorio2, Giovanni Bruno2, Christian Helgert3, Thomas Pertsch3, Ernst-Bernhard Kley3, Thomas Mueller4, Thomas Fromherz2 and Michael Muehlberger1

1Functional Surfaces and Nanostructures, Profactor GmbH, Im Stadtgut A2, 4407 Steyr-Gleink, Austria iris.bergmair@profactor.at
2Institute of Inorganic Methodologies and of Plasmas-CNR, via Orabona, 4, 70126 Bari, Italy
3Institute for Applied Physics, Friedrich-Schiller-Universität Jena, Max Wien Platz 1, 07743 Jena, Germany
4Institute of Photonics, Vienna University of Technology, Gußhausstraße 25-29, 1040 Wien
5Institute of Semiconductor and Solid State Physics, Johannes Kepler University of Linz, Altenbergerstr. 69, 4040 Linz, Austria

In this work we demonstrate the micro- and nanostructuring of graphene using UV-based Nanoimprint Lithography (NIL) on nickel, copper or silica substrates. Exfoliated [1] as well as chemical vapor deposited (CVD) graphene [2][3] was used to demonstrate that our technique is suitable for large-area patterning up to 1 x 1 cm². Feature sizes down to 20 nm were achieved by a wafer-scale process which opens up new possibilities for low-cost and high-throughput manufacturing of graphene-based devices for high frequency applications [4], graphene optoelectronics [5], [6] photonics [7], plasmonics [8].

The most frequently reported method to structure graphene is e-beam lithography [9] with a low throughput. NIL allows fast nanopatterning of structures on large areas and is therefore a suitable technique for future mass production. In the last years few approaches have been started to achieve structured graphene using NIL. Liang et al. have reported a method using exfoliation of graphene layers with a patterned graphite stamp [10] and electrostatic assisted exfoliation [11]. Moreover, first steps were undertaken by the same group to achieve nanopatterned graphene by thermal NIL on top of electrostatically exfoliated graphene flakes and subsequent oxygen-assisted etching [12]. One drawback of all these methods is the dependency on random graphene flakes which furthermore were subject to a varying number of layers. Our work represents the first comprehensive investigation of a potentially low-cost, direct imprint process capable of achieving large areas of micro- and nanostructured graphene showing a UV-based NIL process (Figure 1) on exfoliated graphene (Figure 2), on CVD graphene on nickel and copper substrates over 1 x 1 cm² [2], [3] (Figure 3) and patterning of CVD graphene transferred from copper onto silica (Figure 4). For the results shown here a two layer resist system (LOR1A and mr-UVCur06) was spin coated on a graphene substrate (Figure 1(a)). The mr-UVCur06 is structured using UV-based NIL on 2.5 x 2.5 cm² and the pattern is transferred to the substrate by reactive ion etching using oxygen (Figure 1(b)). Afterwards the LOR1A is dissolved in a developer such that the structured graphene layers remain (Figure 1(c)). The processed graphene films show electron mobilities of up to 4.6 10³ cm²/Vs, which confirms them to exhibit state-of-the-art electronic quality.

The authors acknowledge funding by the European Community’s 7th Framework Programme under grant agreement 228637 (NIM_NIL: www.nimnil.org). The Austrian authors acknowledge additional funding by the NILgraphene project within the NILAustria research project cluster.

References

Figures

Figure 1: Schematic drawing of UV-based NIL structuring process of graphene using (a) spin coating of resists, (b) Imprinting and etching, (c) lift-off of resists and remaining patterned graphene.

Figure 2: Structured graphene with feature sizes down to 20 nm (dark area) and a period of 600 nm in either lateral direction.

Figure 3: Microstructured graphene on copper substrate with a patterned area of 1 x 1 cm².

Figure 4: CVD graphene transferred on silica and microstructured by UV-based NIL.