A generalised, tight-binding transport model description for random edge-defected ZGNRs
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The transport properties and magnetisation of edge-defected zig-zag graphene nanoribbons (ZGNRs)
have been studied within the Landauer-Bittiker formalism [1] using a generalised tight-binding model
that has been shown to be accurate against ab initio calculations [2]. The generalised tight-binding
model includes up to third nearest-neighbour hopping and a mean-field Hubbard-U term, with a single-
parameter set for armchair, zigzag and mixed-edge nanoribbon systems [2]. The interplay between the
extended hopping, Hubbard-U and random edge-disorder on the coherent transport properties has been
investigated for small-width ZGNRs of finite device length (Fig. 1a). Second nearest-neighbour hopping
and the mean-field Hubbard-U have been shown to be essential for reproducing the electronic
properties (band-gap and asymmetry) and magnetism in ZGNRs predicted by ab initio calculations [2].
Hence this work extends previous studies on ZGNRs that have used only a nearest-neighbour tight-
binding model together with random edge-disorder [3-6], or ab initio methods to study systematic edge-
disorder [7].

Two types of random, edge-disorder were investigated namely, weak-disorder and edge-vacancy
defects. Weak-disorder was introduced by perturbing the on-site energy of the edge-atoms by a random
amount within the range £|V| eV (see also Li et al. [3]), whereas edge-vacancy defects were added by
random removal of the individual carbon atoms at the edge-sites in a manner that avoids the formation
of unrealistic edge-structures (for example Klein defects) (Fig. 1b) [4]. Small-width ZGNR systems were
chosen as previous reports have shown that the coherent transport properties of these systems are
more sensitive to edge-defects [3]. We calculated ensemble averages for the transport properties using
a minimum of 9 randomly generated defected systems in order to ensure good statistics in our results.

Random edge-vacancies are found to decrease the calculated conductance for the ZGNR system (Fig.
2a). Significant differences in the conductance occurs about the Fermi energy (Eg), where the Hubbard-
U is seen to open up the transport gap. Against the extended model results for the ideal system, the
Hubbard-U induced gap in the defected system is slightly smaller in width. This reduction in width arises
from the perturbation obtained in the gap region from the extended hopping terms. Away from Er there
is little difference between the extended model results for systems that are with or without the Hubbard-
U (Fig. 2a). At higher energies, however, these differences become more significant, and in general, it is
shown that the extended model acts to bolster the conductance results.

Random, weak-disorder of the edge-atoms in ZGNR systems results in the formation of a transport gap,
which increases in width as a function of the increasing value of the disorder, and has been explained in
terms of the onset of Anderson localisation [3-6]. This, however, is not the only mechanism for gap
formation in ZGNRs, and therefore we have also been interested to study the interplay between weak-
disorder effects and the gap-forming properties of the Hubbard-U. Fig. 2(b) shows that Hubbard-U
effects in the random, weak-disordered system results in a larger transport gap than that of the weakly
disordered system described by the hopping terms alone, and that these effects are in fact additive
resulting in an overall increase in the transport gap.
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Fig. 1: (a) An ideal ZGNR device showing the dimensions of the ribbon used in this study and (b) a 10% vacancy
edge-defected ZGNR device system. Coloured circles correspond to the local spin-polarisation results, where red
refers to net spin-up and blue refers to net spin-down.
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Fig.2: Effect of the mean-field Hubbard-U and extended hopping terms on the transport properties of (a) a 10%
random edge-vacancy defected ZGNR and (b) a random, weak-edge disordered ZGNR. Both types of disorder
were applied to the ideal ZGNR system shown in Fig 1, with an ensemble average obtained for the results over a
minimum of 9 random configurations. Here, t1 23 (t1) specifies the range of the nearest-neighbour hopping where 1,
2 and 3 denote first, second and third nearest-neighbour hopping, respectively. The parameters for the generalised,
tight-binding model are t; = 2.7, t; = 0.20, t3 = 0.18 and U = 2.0 in units of eV. For defected systems with Hubbard-
U, solid(dashed) lines correspond to spin-up(down). For all other cases, the results are spin-independent.



