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Graphene nanoribbons (GNR), stripes of nanometric widths cut from graphene, are the subject of a 

growing interest. They exhibit edge-localized states, which may play an important role in transport and 

magnetic properties. For instance, the magnetic properties of nanoribbons are directly related to the 

existence of localized edge states [1]. All these edge terminations have been experimentally identified 

by different techniques, such as scanning tunneling microscopy [2,3], high-resolution transmission 

electron microscopy [4], or atom-by-atom spectroscopy [5]. It is thus important to identify general edges 

and nanoribbons that present localized edge states, as well as their degeneracy and characteristics. 

 

We prescribe general rules to predict the existence of edge states and zero-energy flat bands in 

graphene nanoribbons and graphene edges of arbitrary shape [6]. No calculations are needed. For the 

so-called minimal edges, the projection of the edge translation vector into the zigzag direction of 

graphene uniquely determines the edge bands. By adding nodes to minimal edges, arbitrarily modified 

edges can be obtained (Fig. 1); their corresponding edge bands can be found by applying hybridization 

rules of the extra states with those belonging to the original edge. Our prescription correctly predicts the 

localization and degeneracy of the zero-energy bands at one of the graphene sublattices, confirmed by 

tight-binding and first-principles calculations (Fig. 2). It also allows us to qualitatively predict the 

existence of E = 0 bands appearing in the energy gap of certain edges and nanoribbons. 
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Figures 

 
 
 
FIG. 1: Geometries of several modified zigzag graphene edges: (a) Bearded zigzag edge, composed of Klein 
defects; (b) a cape structure on a zigzag edge, obtained by bonding one extra atom to two adjacent Klein defects; 
(c) a cove edge; and (d) a periodic modified edge with a cape. 

 
 
FIG. 2: (Color online) Localization of the wave functions corresponding to the E = 0 band at k = π for 40(2,0) (left) 
and 40(4,0) (right) GNR with a cape structure at the edges. The corresponding edges are shown in Figs. 5(c) and 
5(d), respectively. Only an edge and a few neighboring nodes in the GNRs unit cells are shown. Upper panel: 
Results obtained using tight-binding method. Bottom panel: Results of first-principles calculations. The dot diameter 
in the upper panel reflects the TB density at the nodes. No dot means that the wave function is exactly zero at this 
node. 


