MAMO

The enabling role of graphene in integrated optics

Daniel Schall

Advanced Microelectronic Center Aachen - AMO GmbH Germany

1970: *Intel 4004* First integrated processor.

Comprises integrated transistors.

04004 0339

Picture: Wikipedia

Paradigm shift in microelectronics.

04004 00339

Picture: Wikipedia

Pictures: Cisco/Fujitsu/Finisar

Paradigm shift in opto-electronics.

Extension: Vision for 22 nm CMOS **Convergence Optics / Electronics**

Paradigm shift – Device requirements

Device requirements

Material must enable devices with:

- High bandwidth
- High sensitivity
- High extinction ratio
- Low energy consumption
- Low drive voltages
- Low insertion loss
- Small footprint

Technological requirements

Manufacturing and integration:

- Manufacturing on large scale
- Integration possible
- Process compatibility

Can graphene meet the requirements?

schall@amo.de www.amo.de

Why graphene?

Intrinsic properties of graphene are promising:

- Ultra broadband interaction (IR-UV)
- High absorption
- High carrier mobility
- Fast relaxation of excited carriers
- Optical properties tunable by gating

Technological compatibility at least in parts demonstrated:

Graphene on 300 mm wafer

- Growth on 12 inch wafer size demonstrated
- Si integration feasible
- Thermally robust (at least to 300°C)

Transmitter: Phase vs. amplitude modulation

Amplitude shift keying ASK

Amplitude shift keying (ASK)

- Simple System
- For low data rates / short distance

Binary phase shift keying BPSK

- Complex System
- For high data rates / long distance

2 modulator operation principles.

Simulation of the absorption on Si waveguide

Simulation of the refractive index on Si waveguide

- $\lambda = 1550 \text{ nm} \rightarrow \text{E}_{\text{phot}} = 0.8 \text{ eV}$
- Kramers-Kronig relates the absorption to the refractive index

 → refractive index is a function of the electro chemical potential

Simulation of absorption and AMO refractive index on Si waveguide

- Refractive index and absorption depend on the chemical potential
- high mobility gives low absorption for µ < -0.4 eV preferred for phase modulators.

Phase and absorption modulator realizable

schall@amo.de www.amo.de

- SOI substrate 220 nm top Si
- Bottom electrode close to the waveguide surface
- Top electrode located in a distance of ~ 90 nm
- The lower electrode is adjusted between transparent and absorbing state

Absorption modulator DC

High modulation depth, low insertion loss.

schall@amo.de ■ www.amo.de

M. Mohsin et al. Optics Express 22, 15292 (2014)

Absorption modulator RF

Bandwidth limiting factors:

- Device geometry graphene electrode overlap ~1.5 µm
- Contact resistance
- No intrinsic limitation

30 GHz already demonstrated by the Lipson Group

schall@amo.de ■ www.amo.de

Absorption modulator comparison

	Graphene ¹	Graphene simulations	GeSi ²	Si (MZI) ³	(LiNbO) (~4500 €)
Modulation	16 dB	16 dB	6 dB	5.5 dB	20 dB
Insertion Loss	3 dB	<1dB	5 dB	4.2 dB	4 dB
Modulation / IL ratio	5	>15	1.2	1.3	5
Length	300 µm	<15µm	30 µm	5 mm	8 cm
Speed	3.4 GHz	>30 GHz	40 GHz	26.5 GHz	35 GHz

Performance already competitive to SOTA.

- 1) M. Mohsin et al. Optics Express 22, 15292 (2014)
- 2) D. Feng et al. Optics Express 20, 2224 (2013)
- 3) X. Tu et al. Optics Express 21, 12776 (2013)

Phase modulator schematic

- SOI substrate 220 nm top Si
- Bottom electrode close to the waveguide surface
- Top electrode located in a distance of ~ 90 nm
- The refractive index of the lower electrode is adjusted

Phase shift observed, prove of concept.

22

Explanation of the results

The device was operated in the yellow shaded area.

Problems there:

- High absorption
- Small change of the refractive index

Solution: doping of the device to operate at optimum

Phase modulator comparison

	Graphene ¹	Graphene Simulations ¹	SISCAP ²	Si depletion ³	(LiNbO) (~4500 €)
V _π L (Vcm)	30	0.05	<0.2	2.5	~30
Insertion Loss α (dB/cm)	100	<170	65	11	0.6
V _π Lα	3000	<8.3	13	28.5	20

- Operation demonstrated, results far behind SOTA
- Excellent performance expected for high mobility (> 2000 cm²/Vs) and high doping levels > 0.5 eV
 - 1) M. Mohsin et al. Scientific Reports 5,10967 (2015)
 - 2) Webster et al. IEEE Group IV conf (2014)
 - 3) Xiao et al. Optics Express 21, 4116 (2013)

Photodetector schematic

- Graphene on Silicon (SOI) waveguide (for $\lambda = 1550$ nm).
- Graphene absorption \sim 35% for I = 30 μ m.
- CVD grown mono layer graphene (large scale, no flakes).
- Asymmetric contact scheme for net current flow.
- Measured in air and at RT

Bias free response

- 10 detectors on one die
- Linear dependency on optical power
- Extrinsic S = 2..17 mA/W without bias
- Intrinsic S ~ 20...160 mA/W
- Quantum efficiency up to 13 %

RF Measurement setup

Signal generation by a heterodyne setup:

- Two laser sources at f1 and f2 (around 1550 nm, ~193 THz)
- Beating frequency
 f = f1 f2
- f is varied from 1...110 GHz by tuning one laser source

GPD = Graphene photodetector EDFA = Erbium doped fiber amplifier LD = Laser diode

RF measurement up to 110 GHz

Flat up to 70 GHz!

Measurement system designed up to 67 GHz

- Prober ~0.2 dB @ 67 GHz
- Cable 0.8 dB @ 67 GHz
- Bias Tee 0.5 1 dB @ 67 GHz

Significant contributions of the equipoment to losses above 67 GHz. Characteristic dominated by system.

Fabrication entirely on 6".

Detector bandwidth larger than 70 GHz, Datarate up to 150 GBit/s possible.

29

50 GBit/s data link

schall@amo.de ■ www.amo.de

D. Schall et al., ACS Photonics 1, 781(2014) ³⁰

Comparison to SOTA detectors

	Graphene ¹	Graphene potential	Ge ²	Ge-APD ³	InP ⁴	Phos- phorene⁵
Data Rate GBit/s	50	> 150	40	10	160	3
Sensitivity A/W	0.01 0.1	0.5	0.8 1	10	0.6	0.7
Wafe-scale integration	Not perfect but feasible	ОК	ОК	ОК	NO	Not yet

Graphene PDs become relevant for applications, if sensitivity is increased.

- 1) Schall et al. ACS Photonics 1, 781 (2014)
- 2) Vivien et al. Optics Express 20, 1096 (2012)
- 3) Virot et al. Nature Comm. 5, 4957 (2014)

- 4) Heinrich Hertz-Institute Berlin (2015)
- 5) Youngblood et al. Nature Phot. (2015)

Paradigm shift – Requirements CHECK

Device requirements	Parameter	Det	Mod		
	High bandwidth	\sim			
	High sensitivity				
Low loss	High extinction ratio				
	Low energy consumpt	ion			
	Low drive voltages				
	Low insertion loss				
High speed	Small footprint				
Technological requirements	Parameter				
	Manufacturing on large scale				
	Integration possib	ole			
	Process compatib	Process compatibility			
RIXTRON RATEDY RECEIPTION					
6" integrated					
300 mm growth	VOK V	Not yet bu	t feasible		

The EO properties of graphene are very promising for optical interconnects:

- Graphene based photodetectors show ultrafast response; sensitivity is currently a major limitation.
- Graphene based amplitude modulators are already outperforming competing technologies in most parameters; the limited speed is not an intrinsic problem (30 GHz already demonstrated).
- Phase modulators based on graphene are promising from a theoretical point of view; large gap between experiment and theory.

Graphene could become the missing link for the convergence of electronics and optics and enable the next paradigm shift.

Acknowledgement

AMO Graphene and Photonics teams

Main collaborators: Aixtron, Alcatel-Lucent, Graphenea, Renato Negra, RWTH Aachen Frank Koppens, ICFO Roman Sordan, PMI Thomas Mueller, TU Vienna Christoph Stampfer, RWTH Aachen Stephan Hofmann, UCAM David Jimenez, UAB Gianluca Fiori, Pisa Gerd Bacher, Duisburg Essen

Deutsche Forschungsgemeinschaft **DFG**

Thank you for your attention.