Chun Ning Lau (Jeanie)

UNIVERSITY of CALIFORNIA **Riverside**

Quantum Hall Effect in Few-layer Atomic Membranes

• Symmetry-broken Ground State in Few Layer Graphene

Transport Properties of Ionic Liquid-Gated Suspended MoS₂
Transistors

• Quantum oscillations in Few-layer Phosphorene

2D Materials and Heterostructures

Geim, Nature 2013.

- Conductors, e.g. graphene, few-layer graphene
- Semiconductors, e.g MoS₂, WS₂,
- Superconductors, Nb₂Se₃
- Insulators, e.g. hBN
- Charge density waves, e.g. NbSe
- Ferromagnets, e.g. VSe₂

What to ask a material scientist/experimentalist

What to ask a material scientist/experimentalist

High Mobility allows exploration of

- Better electronic devices and transistors
- Novel phenomena not obscured by disorder
 - integer and fractional quantum Hall effect
 - magnetic focusing
 - electron optics
 - electron correlation
 - spontaneous symmetry breaking
 -
- ultimate possibilities
 - set the stage for technological innovations and revolutions

Usual Suspects of Mobility Bottleneck

- Lattice defects/substitutions/vacancies
- Phonons
 - intrinsic
 - surface phonons from substrates
- Impurities
 - intrinsic
 - charged impurities/dangling bonds from substrates
- Ripples and corrugations
 - intrinsic
 - substrates

Schottky barriers (for semiconducting 2D materials)

 \rightarrow substrate engineering

elimination (suspended samples)

Andrei group Kim group

atomically flat, no dangling bonds \rightarrow hexagonal BN

Columbia group, Nat. Nanotechnol. 2012

There is still life in graphene....

- Extremely simple and elegant system and Hamiltonian
- Rich physics
 - massless or massive Dirac fermions
 - possible phases: layer antiferromagnet, ferromagnet, unconventional superconductivity, quantum spin Hall...
- Strong interactions in few-layer graphene with competing symmetries (layer, valley, spin, orbital...)
- \rightarrow rich phase diagram
- Fantastic quantum Hall platform
 - multicomponent
 - lowest Landau level is 2L-degenerate (L=# layers)
 - extremely tunable (density, $B_t \rightarrow spin$, $B_\perp \rightarrow orbital$, $E_\perp \rightarrow layer$)

1, 2, 3...

1, 2, 3...

Gapped Insulating State in BLG

dl/dV vs. Electric field and source-drain bias at charge neutrality point

- **intrinsic gapped** ground state ~ 2meV
- Gap can be closed by electric field of either polarity ~ 12 meV/nm.
- Layer antiferromagnet

W. Bao, J. Velasco Jr, F. Zhang, L. Jing,B. Standley, D. Smirnov, M. Bockrath,A. MacDonald, C.N. Lau, Proc. Nat.Acad. Sci., 109, 10802 (2012).

J. Velasco Jr., L. Jing, W. Bao, Y. Lee, P. Kratz, V. Aji, M. Bockrath, C.N. Lau, C. Varma, R. Stillwell, D. Smirnov, Fan Zhang, J. Jung, A.H. MacDonald, Nature Nanotechnol., 7, 156 (2012).

Dual-Gated Suspended ABC Trilayer Graphene

Effect of electric and magnetic fields

Differential conductance G vs source drain bias V at n=0

• gap educed symmetrically by $|E_{\perp}|$

 \rightarrow not layer polarized; arises from electronic interactions

• gap reduced by parallel magnetic field at 30T

Y. Lee, D. Tran, K. Myhro, J. V. Jr., N. Gillgren, C. N. Lau, Y. Barlas, J. M. Poumirol, D. Smirnov, and F. Guinea, Nature Communications, 5, 5656 (2014)

Proposed Phase Diagram

Y. Lee, D. Tran, K. Myhro, J. V. Jr., N. Gillgren, C. N. Lau, Y. Barlas, J. M. Poumirol, D. Smirnov, and F. Guinea, Nature Communications, 5, 5656 (2014)

Layer-dependent Gap

- Spontaneous and single-particle gaps
- why stop at 3...

$$\alpha \sim \frac{\text{Coulomb Energy}}{\text{Fermi Energy} \sim k^p} \sim \kappa^{-1} n^{-\frac{p-1}{2}}$$

n=charge density (10^{10} cm⁻²) κ =dielectric constant

	Dispersion	а (к=1)	Interaction- induced Gap	Τ _c
GaAs/AlGaAs	E~k²	(10-50)/√n		
Single Layer Graphene	E~k	2.2	<0.1meV	N/A
Bilayer Graphene	<i>E~k</i> ²	70/√n	2-3 meV	5K
ABC-stacked Trilayer	<i>E~k</i> ³	1500/n	40 meV	36K
ABC-stacked N-layer	E~k ^ℕ	gigantic	gigantic?	RT?

Interaction-induced gap in tetra-layer?

Outline

• Symmetry-broken Ground State in Few Layer Graphene

• Transport Properties of Ionic Liquid-Gated Suspended MoS_2

Transistors

• Quantum oscillations in Few-layer Phosphorene

MoS₂

- gapped, On/Off ratio >10⁶
- direct-to-indirect band gap transition as function of thickness
- valley physics

Radisavljevic et al, Nat. Nanoetchnol. 2011.

Wu et al, Nat. Phys. 2013.

and many others

But

Mobility $\sim 200 - 500 \text{ cm}^2/\text{Vs}$

Suspending MoS₂

F. Wang, M. Gray, P. Stepanov and C.N. Lau, Nanotechnology, in press (2015)

- the mobility is even lower, 0.1 -50 cm²/Vs
- gas annealing \rightarrow 200 cm²/Vs
- Removing substrates does not significantly improve mobility
- Other mobility bottlenecks:
 - Schottky barriers at contact
 - impurity scattering
 - defects

see recent work from Columbia group

Ionic liquid gating of MoS₂

In collaboration with Robert Haddon at UCR

- Ionic liquids are molten salts with low melting point
- can induce high carrier density (up to 10¹⁴ cm⁻²)
- use DEME-TFSI (N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis-(trifluoromethylsulphonyl)-imide)

F. Wang, M. Gray, P. Stepanov and C.N. Lau, in preparation (2015)

Comparing Suspended and non-suspended devices

Performed IL gating of 9 suspended and 9 substrate-supported samples

- use DEME-TFSI (N,N-diethyl-N-(2methoxyethyl)-N-methylammonium bis-(trifluoromethylsulphonyl)-imide)
- all suspended devices are more conductive by 1-4 orders of magnitude
- → IL gating is more effective in freestanding devices

Mechanism:

- 1. Higher charge density
- 2. Better screening that reduce Schottky barriers and impurity scattering

F. Wang, M. Gray, P. Stepanov and C.N. Lau, Nano Lett. (2015)

Transport Mechanism

Schottky emission at MoS₂-electrode interfaces

$$I \propto \exp\left(\frac{a\sqrt{V} - \Phi_B}{k_B T}\right)$$

$$a = e_{\sqrt{\frac{e}{4\pi\varepsilon_{0}\varepsilon_{r}d}}}$$

slope yields $\varepsilon_r \sim 11$ \rightarrow dielectric constant of DEME-TFSI ~ 14.5

IL-tuned Metal Insulator Transition

- metal insulator transition observed as V_{ILg} is tuned
- At small V_{ILq}, transport via thermal activation

$$I \propto \exp\left(\frac{a\sqrt{V} - \Phi_B}{k_B T}\right) \qquad \qquad a = e_{\sqrt{\frac{e}{4\pi\varepsilon_0\varepsilon_r d}}} \text{ obtained from I-V curves}$$

Ionic liquid gating of Suspended MoS₂

- ratio of ionic liquid gate to back gate: up to 400
- >~ coupling efficiency of substrate-supported devices
- allow extremely high doping density

F. Wang, M. Gray, P. Stepanov and C.N. Lau, Nano Lett. (2015)

Outline

• Symmetry-broken Ground State in Few Layer Graphene

Transport Properties of Ionic Liquid-Gated Suspended MoS₂
Transistors

• Quantum oscillations in Few-layer Phosphorene

Black Phosphorus

Tran et al, PRB 2014 Asahina & Morita, J. Phys. C, 1986

Few-Layer Black Phosphorus Transistors

Li et al, Nature Nanotechnol 2014

- ambipolar transport
- gapped, on/off ration ~10⁵
- Anisotropic Transport
- Mobility ~100-1000 cm²/Vs for thickness ~2 – 20 nm

Liu et al, ACS Nano 2014

Xia et al, Nature Comm. 2014

October 2015

Challenges

Kroenig et al, APL 2014

Island et al, 2D Materials 2014

Instability in air

- react with water and O₂ to form phosphoric acid
- reaction accelerated by light

Favor et al, arxiv 2014

Mission Impossible? This device will self-destruct in 1 hour

Device Fabrication

Si/SiO₂

- Dry transfer to form hBN/few-layer phosphorene/hBN heterostructure sandwiches
- etch to expose edges of phosphorene
- 1D metallic contact to 2D layers

Columbia group, Science 2013

Device Stability

Wood et al, Nano Letters 2014

- Device left in air for 2 weeks
- Slight shift in charge neutrality point
- Only slight decrease in conductance & mobility

N. Gillgren, D. Wickramaratne, Y. Shi, T. Espiritu, J.Yang, J. Hu, J. Wei, X. Liu, Z. Mao, K. Watanabe, T. Taniguchi, Marc Bockrath, Yafis Barlas, R. K. Lake, C.N. Lau, 2D Materials, in press (2014)

Device mobility

- Ambipolar transport
- On/off ratio ~ 10⁵
- linear I-V \rightarrow ohmic contact
- Metal-insulator transition
- highly hole-doped: metallic, μ up to 4000
- towards band edge: insulating, $\mu \Psi$ with T

Quantum Oscillations

R_{xx} with smooth background subtracted

- oscillations periodic in 1/B
- oscillations periodic in V_a ~n
- doubling frequency in for $B>8T \rightarrow$ Zeeman splitting

-25

N. Gillgren, D. Wickramaratne, Y. Shi, T. Espiritu, J.Yang, J. Hu, J. Wei, X. Liu, Z. Mao, K. Watanabe, T. Taniguchi, Marc Bockrath, Yafis Barlas, R. K. Lake, C.N. Lau, 2D Materials, in press (2015)

Temperature Dependence Quantum Oscillations

Oscillations' amplitude dependence on T $A(T) = \frac{CT}{\sinh(bT)}$ $b = \frac{2\pi^2 k_B m^*}{\hbar e}$

- effective mass of charge carriers ~0.25 to 0.31 m_e as Fermi energy increases towards band edge
- agree with DFT calculations within 50%

N. Gillgren, D. Wickramaratne, Y. Shi, T. Espiritu, J.Yang, J. Hu, J. Wei, X. Liu, Z. Mao, K. Watanabe, T. Taniguchi, Marc Bockrath, Yafis Barlas, R. K. Lake, C.N. Lau, 2D Materials, in press (2014)

Fast Moving Field

1. arXiv:1412.1357 [pdf]

High quality sandwiched black phosphorus heterostructure and its quantum oscillations

Xiaolong Chen, Yingying Wu, Zefei Wu, Shuigang Xu, Lin Wang, Yu Han, Weiguang Ye, Tianyi Han, Yuheng He, Yuan Cai, Ning Wang Subjects: Materials Science (cond-mat.mtrl-sci)

2. arXiv:1412.1274 [pdf]

Accessing the transport properties of pristine few-layer black phosphorus by van der Waals passivation in inert atmosphere

Rostislav A. Doganov, Eoin C.T. O'Farrell, Steven P. Koenig, Yuting Yeo, Angelo Ziletti, Alexandra Carvalho, David K. Campbell, David F. Coker, Kenji Watanabe, Takashi Taniguchi, Antonio H. Castro Neto, Barbaros Özyilmaz

Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Materials Science (cond-mat.mtrl-sci)

3. arXiv:1412.1191 [pdf]

Electrical characterization of fully encapsulated ultra thin black phosphorus-based heterostructures with graphene contacts Ahmet Avsar, Ivan J. Vera-Marun, Tan Jun You, Kenji Watanabe, Takashi Taniguchi, Antonio Helio Castro Neto, Barbaros Ozyilmaz Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall)

4. arXiv:1412.0842 [pdf, other]

Broadband Electrically Detected Magnetic Resonance Using Adiabatic Pulses

F. M. Hrubesch, G. Braunbeck, A. Voss, M. Stutzmann, M. S. Brandt Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall)

5. arXiv:1412.0717 [pdf]

Gate Tunable Quantum Oscillations in Air-Stable and High Mobility Few-Layer Phosphorene Heterostructures

Nathaniel Gillgren, Darshana Wickramaratne, Yanmeng Shi, Tim Espiritu, Jiawei Yang, Jin Hu, Jiang Wei, Xue Liu, Zhiqiang Mao, Kenji Watanabe, Takashi Taniguchi, Marc Bockrath, Yafis Barlas, Roger K. Lake, Chun Ning Lau Comments: minor correction of typos, equations and references Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall)

6. arXiv:1412.0355 [pdf]

Toward Air-Stable Multilayer Phosphorene Thin-Films and Transistors

Joon-Seok Kim, Yingnan Liu, Weinan Zhu, Seohee Kim, Di Wu, Li Tao, Ananth Dodabalapur, Keji Lai, Deji Akinwande Comments: 22 pages, 4 figures Subjects: Materials Science (cond-mat.mtrl-sci)

7. arXiv:1412.0259 [pdf, ps, other]

Two-Dimensional Magnetotransport in a Black Phosphorus Naked Quantum Well

V. Tayari, N. Hemsworth, I. Fakih, A. Favron, E. Gaufrès, G. Gervais, R. Martel, T. Szkopek Comments: 7 pages, 8 figures Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Materials Science (cond-mat.mtrl-sci)

8. arXiv:1411.6572 [pdf]

Quantum Oscillations in Black Phosphorus Two-dimensional Electron Gas

Likai Li, Guo Jun Ye, Vy Tran, Ruixiang Fei, Guorui Chen, Huichao Wang, Jian Wang, Kenji Watanabe, Takashi Taniguchi, Li Yang, Xian Hui Chen, Yuanbo Zhang Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Materials Science (cond-mat.mtrl-sci)

Report of Quantum Hall Effect

Conclusion

- Few layer phosphorene has both high mobility and band gap
- Stable via hBN encapsulation

Outlook

- Physics
 - strain-dependent band gap
 - large anisotropy (up to 60x, electrical and thermal transport, thermopower)
 - electric field effect
 - pressure-induced superconductivity?
 - (anisotropic?) quantum Hall effect
 -
- Electronics and optoelectronics
- hBN encapsulation of reactive 2D materials

Courtesy: FAME center

What to ask a material scientist, part II

Acknowledgments

Graduate Students

Yongjin Lee

Jhao-wun Huang

Fenglin Wang

Kevin Myhro

Yanmeng Shi

Son Tran

Nathaniel Gillgren

Former Graduate Students

Feng Miao (Now @ Nanjing Univ.) Gang Liu (Now @ USC) Wenzhong Bao (Now @ Univ. Maryland) Jairo Velasco (Now @ Berkeley) Hang Zhang (Now @ Caltech)

Undergraduate Students

Tim Espiritu Kevin Thilahar Mason Gray Ziqi Pi

October 2015

Collaborators

UCR Physics Marc Bockrath

Tulane

<u>Tulane</u>

Jiang Wei

UCR Physics Yafis Barlas <u>UCR EE</u> Roger Lake

<u>UT Austin</u> Allan MacDonald Fan Zhang,Jeil Jung

October 2015

